ChatGPT-Next-Web/app/api/langchain-tools/rag_search.ts
2024-04-07 18:01:34 +08:00

65 lines
2.2 KiB
TypeScript

import { Tool } from "@langchain/core/tools";
import { CallbackManagerForToolRun } from "@langchain/core/callbacks/manager";
import { BaseLanguageModel } from "langchain/dist/base_language";
import { formatDocumentsAsString } from "langchain/util/document";
import { Embeddings } from "langchain/dist/embeddings/base.js";
import { RunnableSequence } from "@langchain/core/runnables";
import { StringOutputParser } from "@langchain/core/output_parsers";
import { Pinecone } from "@pinecone-database/pinecone";
import { PineconeStore } from "@langchain/pinecone";
export class RAGSearch extends Tool {
static lc_name() {
return "RAGSearch";
}
get lc_namespace() {
return [...super.lc_namespace, "ragsearch"];
}
private sessionId: string;
private model: BaseLanguageModel;
private embeddings: Embeddings;
constructor(
sessionId: string,
model: BaseLanguageModel,
embeddings: Embeddings,
) {
super();
this.sessionId = sessionId;
this.model = model;
this.embeddings = embeddings;
}
/** @ignore */
async _call(inputs: string, runManager?: CallbackManagerForToolRun) {
const pinecone = new Pinecone();
const pineconeIndex = pinecone.Index(process.env.PINECONE_INDEX!);
const vectorStore = await PineconeStore.fromExistingIndex(this.embeddings, {
pineconeIndex,
});
let context;
const returnCunt = process.env.RAG_RETURN_COUNT
? parseInt(process.env.RAG_RETURN_COUNT, 10)
: 4;
const results = await vectorStore.similaritySearch(inputs, returnCunt, {
sessionId: this.sessionId,
});
context = formatDocumentsAsString(results);
console.log("[rag-search]", context);
return context;
// const input = `Text:${context}\n\nQuestion:${inputs}\n\nI need you to answer the question based on the text.`;
// console.log("[rag-search]", input);
// const chain = RunnableSequence.from([this.model, new StringOutputParser()]);
// return chain.invoke(input, runManager?.getChild());
}
name = "rag-search";
description = `It is used to query documents entered by the user.The input content is the keywords extracted from the user's question, and multiple keywords are separated by spaces and passed in.`;
}