mirror of
https://github.com/ChatGPTNextWeb/ChatGPT-Next-Web.git
synced 2025-05-28 08:30:19 +09:00
65 lines
2.2 KiB
TypeScript
65 lines
2.2 KiB
TypeScript
import { Tool } from "@langchain/core/tools";
|
|
import { CallbackManagerForToolRun } from "@langchain/core/callbacks/manager";
|
|
import { BaseLanguageModel } from "langchain/dist/base_language";
|
|
import { formatDocumentsAsString } from "langchain/util/document";
|
|
import { Embeddings } from "langchain/dist/embeddings/base.js";
|
|
import { RunnableSequence } from "@langchain/core/runnables";
|
|
import { StringOutputParser } from "@langchain/core/output_parsers";
|
|
import { Pinecone } from "@pinecone-database/pinecone";
|
|
import { PineconeStore } from "@langchain/pinecone";
|
|
|
|
export class RAGSearch extends Tool {
|
|
static lc_name() {
|
|
return "RAGSearch";
|
|
}
|
|
|
|
get lc_namespace() {
|
|
return [...super.lc_namespace, "ragsearch"];
|
|
}
|
|
|
|
private sessionId: string;
|
|
private model: BaseLanguageModel;
|
|
private embeddings: Embeddings;
|
|
|
|
constructor(
|
|
sessionId: string,
|
|
model: BaseLanguageModel,
|
|
embeddings: Embeddings,
|
|
) {
|
|
super();
|
|
this.sessionId = sessionId;
|
|
this.model = model;
|
|
this.embeddings = embeddings;
|
|
}
|
|
|
|
/** @ignore */
|
|
async _call(inputs: string, runManager?: CallbackManagerForToolRun) {
|
|
const pinecone = new Pinecone();
|
|
const pineconeIndex = pinecone.Index(process.env.PINECONE_INDEX!);
|
|
const vectorStore = await PineconeStore.fromExistingIndex(this.embeddings, {
|
|
pineconeIndex,
|
|
});
|
|
|
|
let context;
|
|
const returnCunt = process.env.RAG_RETURN_COUNT
|
|
? parseInt(process.env.RAG_RETURN_COUNT, 10)
|
|
: 4;
|
|
const results = await vectorStore.similaritySearch(inputs, returnCunt, {
|
|
sessionId: this.sessionId,
|
|
});
|
|
context = formatDocumentsAsString(results);
|
|
console.log("[rag-search]", context);
|
|
return context;
|
|
// const input = `Text:${context}\n\nQuestion:${inputs}\n\nI need you to answer the question based on the text.`;
|
|
|
|
// console.log("[rag-search]", input);
|
|
|
|
// const chain = RunnableSequence.from([this.model, new StringOutputParser()]);
|
|
// return chain.invoke(input, runManager?.getChild());
|
|
}
|
|
|
|
name = "rag-search";
|
|
|
|
description = `It is used to query documents entered by the user.The input content is the keywords extracted from the user's question, and multiple keywords are separated by spaces and passed in.`;
|
|
}
|