alpha version

This commit is contained in:
Hk-Gosuto 2024-04-05 17:38:06 +08:00
parent ac57b2c770
commit 958ab02d1e
16 changed files with 1118 additions and 177 deletions

View File

@ -23,15 +23,13 @@ async function handle(req: NextRequest) {
const file = formData.get("file") as File;
const originalFileName = file?.name;
const fileReader = file.stream().getReader();
const fileData: number[] = [];
while (true) {
const { done, value } = await fileReader.read();
if (done) break;
fileData.push(...value);
let fileData: ArrayBuffer | undefined;
for (const [key, value] of formData.entries()) {
if (value instanceof File) {
fileData = await value.arrayBuffer();
}
}
if (!fileData) throw new Error("Get file buffer error");
const buffer = Buffer.from(fileData);
const fileType = path.extname(originalFileName).slice(1);
var fileName = `${Date.now()}.${fileType}`;

View File

@ -7,16 +7,15 @@ import { StableDiffusionNodeWrapper } from "@/app/api/langchain-tools/stable_dif
import { Calculator } from "langchain/tools/calculator";
import { WebBrowser } from "langchain/tools/webbrowser";
import { WolframAlphaTool } from "@/app/api/langchain-tools/wolframalpha";
import { RAGSearch } from "./rag_search";
export class NodeJSTool {
private apiKey: string | undefined;
private baseUrl: string;
private model: BaseLanguageModel;
private embeddings: Embeddings;
private sessionId: string;
private ragEmbeddings: Embeddings;
private callback?: (data: string) => Promise<void>;
constructor(
@ -24,12 +23,16 @@ export class NodeJSTool {
baseUrl: string,
model: BaseLanguageModel,
embeddings: Embeddings,
sessionId: string,
ragEmbeddings: Embeddings,
callback?: (data: string) => Promise<void>,
) {
this.apiKey = apiKey;
this.baseUrl = baseUrl;
this.model = model;
this.embeddings = embeddings;
this.sessionId = sessionId;
this.ragEmbeddings = ragEmbeddings;
this.callback = callback;
}
@ -57,6 +60,9 @@ export class NodeJSTool {
wolframAlphaTool,
pdfBrowserTool,
];
if (!!process.env.NEXT_PUBLIC_ENABLE_RAG) {
tools.push(new RAGSearch(this.sessionId, this.model, this.ragEmbeddings));
}
return tools;
}
}

View File

@ -0,0 +1,64 @@
import { Tool } from "@langchain/core/tools";
import { CallbackManagerForToolRun } from "@langchain/core/callbacks/manager";
import { BaseLanguageModel } from "langchain/dist/base_language";
import { formatDocumentsAsString } from "langchain/util/document";
import { Embeddings } from "langchain/dist/embeddings/base.js";
import { RunnableSequence } from "@langchain/core/runnables";
import { StringOutputParser } from "@langchain/core/output_parsers";
import { Pinecone } from "@pinecone-database/pinecone";
import { PineconeStore } from "@langchain/pinecone";
export class RAGSearch extends Tool {
static lc_name() {
return "RAGSearch";
}
get lc_namespace() {
return [...super.lc_namespace, "ragsearch"];
}
private sessionId: string;
private model: BaseLanguageModel;
private embeddings: Embeddings;
constructor(
sessionId: string,
model: BaseLanguageModel,
embeddings: Embeddings,
) {
super();
this.sessionId = sessionId;
this.model = model;
this.embeddings = embeddings;
}
/** @ignore */
async _call(inputs: string, runManager?: CallbackManagerForToolRun) {
const pinecone = new Pinecone();
const pineconeIndex = pinecone.Index(process.env.PINECONE_INDEX!);
const vectorStore = await PineconeStore.fromExistingIndex(this.embeddings, {
pineconeIndex,
});
let context;
const returnCunt = process.env.RAG_RETURN_COUNT
? parseInt(process.env.RAG_RETURN_COUNT, 10)
: 4;
const results = await vectorStore.similaritySearch(inputs, returnCunt, {
sessionId: this.sessionId,
});
context = formatDocumentsAsString(results);
console.log("[rag-search]", context);
return context;
// const input = `Text:${context}\n\nQuestion:${inputs}\n\nI need you to answer the question based on the text.`;
// console.log("[rag-search]", input);
// const chain = RunnableSequence.from([this.model, new StringOutputParser()]);
// return chain.invoke(input, runManager?.getChild());
}
name = "rag-search";
description = `It is used to query documents entered by the user.The input content is the keywords extracted from the user's question, and multiple keywords are separated by spaces and passed in.`;
}

View File

@ -0,0 +1,105 @@
import { NextRequest, NextResponse } from "next/server";
import { auth } from "@/app/api/auth";
import { ACCESS_CODE_PREFIX, ModelProvider } from "@/app/constant";
import { OpenAIEmbeddings } from "@langchain/openai";
import { Pinecone } from "@pinecone-database/pinecone";
import { PineconeStore } from "@langchain/pinecone";
import { getServerSideConfig } from "@/app/config/server";
interface RequestBody {
sessionId: string;
query: string;
baseUrl?: string;
}
async function handle(req: NextRequest) {
if (req.method === "OPTIONS") {
return NextResponse.json({ body: "OK" }, { status: 200 });
}
try {
const authResult = auth(req, ModelProvider.GPT);
if (authResult.error) {
return NextResponse.json(authResult, {
status: 401,
});
}
const reqBody: RequestBody = await req.json();
const authToken = req.headers.get("Authorization") ?? "";
const token = authToken.trim().replaceAll("Bearer ", "").trim();
const pinecone = new Pinecone();
const pineconeIndex = pinecone.Index(process.env.PINECONE_INDEX!);
const apiKey = getOpenAIApiKey(token);
const baseUrl = getOpenAIBaseUrl(reqBody.baseUrl);
const embeddings = new OpenAIEmbeddings(
{
modelName: process.env.RAG_EMBEDDING_MODEL ?? "text-embedding-3-large",
openAIApiKey: apiKey,
},
{ basePath: baseUrl },
);
const vectorStore = await PineconeStore.fromExistingIndex(embeddings, {
pineconeIndex,
});
const results = await vectorStore.similaritySearch(reqBody.query, 1, {
sessionId: reqBody.sessionId,
});
console.log(results);
return NextResponse.json(results, {
status: 200,
});
} catch (e) {
console.error(e);
return new Response(JSON.stringify({ error: (e as any).message }), {
status: 500,
headers: { "Content-Type": "application/json" },
});
}
}
function getOpenAIApiKey(token: string) {
const serverConfig = getServerSideConfig();
const isApiKey = !token.startsWith(ACCESS_CODE_PREFIX);
let apiKey = serverConfig.apiKey;
if (isApiKey && token) {
apiKey = token;
}
return apiKey;
}
function getOpenAIBaseUrl(reqBaseUrl: string | undefined) {
const serverConfig = getServerSideConfig();
let baseUrl = "https://api.openai.com/v1";
if (serverConfig.baseUrl) baseUrl = serverConfig.baseUrl;
if (reqBaseUrl?.startsWith("http://") || reqBaseUrl?.startsWith("https://"))
baseUrl = reqBaseUrl;
if (!baseUrl.endsWith("/v1"))
baseUrl = baseUrl.endsWith("/") ? `${baseUrl}v1` : `${baseUrl}/v1`;
console.log("[baseUrl]", baseUrl);
return baseUrl;
}
export const POST = handle;
export const runtime = "nodejs";
export const preferredRegion = [
"arn1",
"bom1",
"cdg1",
"cle1",
"cpt1",
"dub1",
"fra1",
"gru1",
"hnd1",
"iad1",
"icn1",
"kix1",
"lhr1",
"pdx1",
"sfo1",
"sin1",
"syd1",
];

View File

@ -1,16 +1,66 @@
import { NextRequest, NextResponse } from "next/server";
import { auth } from "@/app/api/auth";
import { NodeJSTool } from "@/app/api/langchain-tools/nodejs_tools";
import { ACCESS_CODE_PREFIX, ModelProvider } from "@/app/constant";
import { OpenAI, OpenAIEmbeddings } from "@langchain/openai";
import path from "path";
import { PDFLoader } from "langchain/document_loaders/fs/pdf";
import { TextLoader } from "langchain/document_loaders/fs/text";
import { CSVLoader } from "langchain/document_loaders/fs/csv";
import { DocxLoader } from "langchain/document_loaders/fs/docx";
import { EPubLoader } from "langchain/document_loaders/fs/epub";
import { JSONLoader } from "langchain/document_loaders/fs/json";
import { JSONLinesLoader } from "langchain/document_loaders/fs/json";
import { OpenAIWhisperAudio } from "langchain/document_loaders/fs/openai_whisper_audio";
// import { PPTXLoader } from "langchain/document_loaders/fs/pptx";
import { SRTLoader } from "langchain/document_loaders/fs/srt";
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";
import { Pinecone } from "@pinecone-database/pinecone";
import { Document } from "@langchain/core/documents";
import { PineconeStore } from "@langchain/pinecone";
import { getServerSideConfig } from "@/app/config/server";
import { RequestBody } from "../../tool/agent/agentapi";
import { FileInfo } from "@/app/client/platforms/utils";
import mime from "mime";
import LocalFileStorage from "@/app/utils/local_file_storage";
import S3FileStorage from "@/app/utils/s3_file_storage";
interface RequestBody {
sessionId: string;
fileInfos: FileInfo[];
baseUrl?: string;
}
function getLoader(
fileName: string,
fileBlob: Blob,
openaiApiKey: string,
openaiBaseUrl: string,
) {
const extension = fileName.split(".").pop();
switch (extension) {
case "txt":
case "md":
return new TextLoader(fileBlob);
case "pdf":
return new PDFLoader(fileBlob);
case "docx":
return new DocxLoader(fileBlob);
case "csv":
return new CSVLoader(fileBlob);
case "json":
return new JSONLoader(fileBlob);
// case 'pptx':
// return new PPTXLoader(fileBlob);
case "srt":
return new SRTLoader(fileBlob);
case "mp3":
return new OpenAIWhisperAudio(fileBlob, {
clientOptions: {
apiKey: openaiApiKey,
baseURL: openaiBaseUrl,
},
});
default:
throw new Error(`Unsupported file type: ${extension}`);
}
}
async function handle(req: NextRequest) {
if (req.method === "OPTIONS") {
@ -27,88 +77,70 @@ async function handle(req: NextRequest) {
const reqBody: RequestBody = await req.json();
const authToken = req.headers.get("Authorization") ?? "";
const token = authToken.trim().replaceAll("Bearer ", "").trim();
//https://js.langchain.com/docs/integrations/vectorstores/pinecone
// const formData = await req.formData();
// const file = formData.get("file") as File;
// const originalFileName = file?.name;
// const fileReader = file.stream().getReader();
// const fileData: number[] = [];
// while (true) {
// const { done, value } = await fileReader.read();
// if (done) break;
// fileData.push(...value);
// }
// const buffer = Buffer.from(fileData);
// const fileType = path.extname(originalFileName).slice(1);
// const fileBlob = bufferToBlob(buffer, "application/pdf")
// const loader = new PDFLoader(fileBlob);
// const docs = await loader.load();
// const textSplitter = new RecursiveCharacterTextSplitter({
// chunkSize: 1000,
// chunkOverlap: 200,
// });
// const splits = await textSplitter.splitDocuments(docs);
const pinecone = new Pinecone();
// await pinecone.createIndex({
// name: 'example-index',
// dimension: 1536,
// metric: 'cosine',
// spec: {
// pod: {
// environment: 'gcp-starter',
// podType: 'p1.x1',
// pods: 1
// }
// }
// });
const pineconeIndex = pinecone.Index("example-index");
const docs = [
new Document({
metadata: { foo: "bar" },
pageContent: "pinecone is a vector db",
}),
new Document({
metadata: { foo: "bar" },
pageContent: "the quick brown fox jumped over the lazy dog",
}),
new Document({
metadata: { baz: "qux" },
pageContent: "lorem ipsum dolor sit amet",
}),
new Document({
metadata: { baz: "qux" },
pageContent: "pinecones are the woody fruiting body and of a pine tree",
}),
];
const apiKey = getOpenAIApiKey(token);
const baseUrl = getOpenAIBaseUrl(reqBody.baseUrl);
console.log(baseUrl);
const serverConfig = getServerSideConfig();
const pinecone = new Pinecone();
const pineconeIndex = pinecone.Index(process.env.PINECONE_INDEX!);
const embeddings = new OpenAIEmbeddings(
{
modelName: "text-embedding-ada-002",
modelName: process.env.RAG_EMBEDDING_MODEL ?? "text-embedding-3-large",
openAIApiKey: apiKey,
},
{ basePath: baseUrl },
);
await PineconeStore.fromDocuments(docs, embeddings, {
pineconeIndex,
maxConcurrency: 5,
});
const vectorStore = await PineconeStore.fromExistingIndex(embeddings, {
pineconeIndex,
});
const results = await vectorStore.similaritySearch("pinecone", 1, {
foo: "bar",
});
console.log(results);
//https://js.langchain.com/docs/integrations/vectorstores/pinecone
// process files
for (let i = 0; i < reqBody.fileInfos.length; i++) {
const fileInfo = reqBody.fileInfos[i];
const contentType = mime.getType(fileInfo.fileName);
// get file buffer
var fileBuffer: Buffer | undefined;
if (serverConfig.isStoreFileToLocal) {
fileBuffer = await LocalFileStorage.get(fileInfo.fileName);
} else {
var file = await S3FileStorage.get(fileInfo.fileName);
var fileByteArray = await file?.transformToByteArray();
if (fileByteArray) fileBuffer = Buffer.from(fileByteArray);
}
if (!fileBuffer || !contentType) {
console.error(`get ${fileInfo.fileName} buffer fail`);
continue;
}
// load file to docs
const fileBlob = bufferToBlob(fileBuffer, contentType);
const loader = getLoader(fileInfo.fileName, fileBlob, apiKey, baseUrl);
const docs = await loader.load();
// modify doc meta
docs.forEach((doc) => {
doc.metadata = {
...doc.metadata,
sessionId: reqBody.sessionId,
sourceFileName: fileInfo.originalFilename,
fileName: fileInfo.fileName,
};
});
// split
const chunkSize = process.env.RAG_CHUNK_SIZE
? parseInt(process.env.RAG_CHUNK_SIZE, 10)
: 2000;
const chunkOverlap = process.env.RAG_CHUNK_OVERLAP
? parseInt(process.env.RAG_CHUNK_OVERLAP, 10)
: 200;
const textSplitter = new RecursiveCharacterTextSplitter({
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
});
const splits = await textSplitter.splitDocuments(docs);
// remove history
await PineconeStore.fromDocuments(splits, embeddings, {
pineconeIndex,
maxConcurrency: 5,
});
}
return NextResponse.json(
{
storeId: "",
sessionId: reqBody.sessionId,
},
{
status: 200,
@ -140,7 +172,6 @@ function getOpenAIApiKey(token: string) {
}
return apiKey;
}
function getOpenAIBaseUrl(reqBaseUrl: string | undefined) {
const serverConfig = getServerSideConfig();
let baseUrl = "https://api.openai.com/v1";
@ -153,7 +184,25 @@ function getOpenAIBaseUrl(reqBaseUrl: string | undefined) {
return baseUrl;
}
export const GET = handle;
export const POST = handle;
export const runtime = "nodejs";
export const preferredRegion = [
"arn1",
"bom1",
"cdg1",
"cle1",
"cpt1",
"dub1",
"fra1",
"gru1",
"hnd1",
"iad1",
"icn1",
"kix1",
"lhr1",
"pdx1",
"sfo1",
"sin1",
"syd1",
];

View File

@ -44,6 +44,7 @@ export interface RequestMessage {
}
export interface RequestBody {
chatSessionId: string;
messages: RequestMessage[];
isAzure: boolean;
azureApiVersion?: string;

View File

@ -44,6 +44,13 @@ async function handle(req: NextRequest) {
},
{ basePath: baseUrl },
);
const ragEmbeddings = new OpenAIEmbeddings(
{
modelName: process.env.RAG_EMBEDDING_MODEL ?? "text-embedding-3-large",
openAIApiKey: apiKey,
},
{ basePath: baseUrl },
);
var dalleCallback = async (data: string) => {
var response = new ResponseBody();
@ -62,6 +69,8 @@ async function handle(req: NextRequest) {
baseUrl,
model,
embeddings,
reqBody.chatSessionId,
ragEmbeddings,
dalleCallback,
);
var nodejsTools = await nodejsTool.getCustomTools();

View File

@ -7,7 +7,7 @@ import {
} from "../constant";
import { ChatMessage, ModelType, useAccessStore, useChatStore } from "../store";
import { ChatGPTApi } from "./platforms/openai";
import { FileApi } from "./platforms/utils";
import { FileApi, FileInfo } from "./platforms/utils";
import { GeminiProApi } from "./platforms/google";
export const ROLES = ["system", "user", "assistant"] as const;
export type MessageRole = (typeof ROLES)[number];
@ -27,6 +27,7 @@ export interface MultimodalContent {
export interface RequestMessage {
role: MessageRole;
content: string | MultimodalContent[];
fileInfos?: FileInfo[];
}
export interface LLMConfig {
@ -74,6 +75,7 @@ export interface ChatOptions {
}
export interface AgentChatOptions {
chatSessionId?: string;
messages: RequestMessage[];
config: LLMConfig;
agentConfig: LLMAgentConfig;
@ -84,6 +86,13 @@ export interface AgentChatOptions {
onController?: (controller: AbortController) => void;
}
export interface CreateRAGStoreOptions {
chatSessionId: string;
fileInfos: FileInfo[];
onError?: (err: Error) => void;
onController?: (controller: AbortController) => void;
}
export interface LLMUsage {
used: number;
total: number;
@ -106,6 +115,7 @@ export abstract class LLMApi {
abstract speech(options: SpeechOptions): Promise<ArrayBuffer>;
abstract transcription(options: TranscriptionOptions): Promise<string>;
abstract toolAgentChat(options: AgentChatOptions): Promise<void>;
abstract createRAGSore(options: CreateRAGStoreOptions): Promise<void>;
abstract usage(): Promise<LLMUsage>;
abstract models(): Promise<LLMModel[]>;
}
@ -213,8 +223,8 @@ export function getHeaders(ignoreHeaders?: boolean) {
const apiKey = isGoogle
? accessStore.googleApiKey
: isAzure
? accessStore.azureApiKey
: accessStore.openaiApiKey;
? accessStore.azureApiKey
: accessStore.openaiApiKey;
const makeBearer = (s: string) =>
`${isGoogle || isAzure ? "" : "Bearer "}${s.trim()}`;

View File

@ -2,6 +2,7 @@ import { Google, REQUEST_TIMEOUT_MS } from "@/app/constant";
import {
AgentChatOptions,
ChatOptions,
CreateRAGStoreOptions,
getHeaders,
LLMApi,
LLMModel,
@ -19,6 +20,9 @@ import {
} from "@/app/utils";
export class GeminiProApi implements LLMApi {
createRAGSore(options: CreateRAGStoreOptions): Promise<void> {
throw new Error("Method not implemented.");
}
transcription(options: TranscriptionOptions): Promise<string> {
throw new Error("Method not implemented.");
}

View File

@ -12,6 +12,7 @@ import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
import {
AgentChatOptions,
ChatOptions,
CreateRAGStoreOptions,
getHeaders,
LLMApi,
LLMModel,
@ -362,6 +363,34 @@ export class ChatGPTApi implements LLMApi {
}
}
async createRAGSore(options: CreateRAGStoreOptions): Promise<void> {
try {
const accessStore = useAccessStore.getState();
const isAzure = accessStore.provider === ServiceProvider.Azure;
let baseUrl = isAzure ? accessStore.azureUrl : accessStore.openaiUrl;
const requestPayload = {
sessionId: options.chatSessionId,
fileInfos: options.fileInfos,
baseUrl: baseUrl,
};
console.log("[Request] openai payload: ", requestPayload);
const controller = new AbortController();
options.onController?.(controller);
let path = "/api/langchain/rag/store";
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
const res = await fetch(path, chatPayload);
if (res.status !== 200) throw new Error(await res.text());
} catch (e) {
console.log("[Request] failed to make a chat reqeust", e);
options.onError?.(e as Error);
}
}
async toolAgentChat(options: AgentChatOptions) {
const messages = options.messages.map((v) => ({
role: v.role,
@ -379,6 +408,7 @@ export class ChatGPTApi implements LLMApi {
const isAzure = accessStore.provider === ServiceProvider.Azure;
let baseUrl = isAzure ? accessStore.azureUrl : accessStore.openaiUrl;
const requestPayload = {
chatSessionId: options.chatSessionId,
messages,
isAzure,
azureApiVersion: accessStore.azureApiVersion,

View File

@ -18,21 +18,25 @@
background-position: center;
background-color: var(--second);
display: flex;
position: relative;
justify-content: center;
align-items: center;
span {
.attach-file-info {
top: 5px;
width: 100%;
position: absolute;
font-size: 12px;
overflow: hidden;
text-overflow: ellipsis;
display: -webkit-box;
font-weight: bolder;
text-align: center;
word-wrap: break-word;
word-break: break-all;
-webkit-line-clamp: 3;
-webkit-box-orient: vertical;
line-height: 1.5;
top: 8px;
bottom: 8px;
left: 5px;
right: 10px;
pointer-events: none;
overflow: hidden;
text-overflow: ellipsis;
display: -webkit-box;
}
.attach-file-mask {
@ -516,6 +520,17 @@
transition: all ease 0.3s;
}
.chat-message-item-files {
display: grid;
grid-template-columns: repeat(var(--file-count), auto);
grid-gap: 5px;
}
.chat-message-item-file {
text-decoration: none;
color: #aaa;
}
.chat-message-item-image {
width: 100%;
margin-top: 10px;

View File

@ -876,7 +876,7 @@ function _Chat() {
}
setIsLoading(true);
chatStore
.onUserInput(userInput, attachImages)
.onUserInput(userInput, attachImages, attachFiles)
.then(() => setIsLoading(false));
setAttachImages([]);
setAttachFiles([]);
@ -1106,34 +1106,36 @@ function _Chat() {
// preview messages
const renderMessages = useMemo(() => {
return context
.concat(session.messages as RenderMessage[])
.concat(
isLoading
? [
{
...createMessage({
role: "assistant",
content: "……",
}),
preview: true,
},
]
: [],
)
.concat(
userInput.length > 0 && config.sendPreviewBubble
? [
{
...createMessage({
role: "user",
content: userInput,
}),
preview: true,
},
]
: [],
);
return (
context
.concat(session.messages as RenderMessage[])
// .concat(
// isLoading
// ? [
// {
// ...createMessage({
// role: "assistant",
// content: "……",
// }),
// preview: true,
// },
// ]
// : [],
// )
.concat(
userInput.length > 0 && config.sendPreviewBubble
? [
{
...createMessage({
role: "user",
content: userInput,
}),
preview: true,
},
]
: [],
)
);
}, [
config.sendPreviewBubble,
context,
@ -1658,6 +1660,29 @@ function _Chat() {
parentRef={scrollRef}
defaultShow={i >= messages.length - 6}
/>
{message.fileInfos && message.fileInfos.length > 0 && (
<nav
className={styles["chat-message-item-files"]}
style={
{
"--file-count": message.fileInfos.length,
} as React.CSSProperties
}
>
{message.fileInfos.map((fileInfo, index) => {
return (
<a
key={index}
href={fileInfo.filePath}
className={styles["chat-message-item-file"]}
target="_blank"
>
{fileInfo.originalFilename}
</a>
);
})}
</nav>
)}
{getMessageImages(message).length == 1 && (
<img
className={styles["chat-message-item-image"]}
@ -1784,7 +1809,9 @@ function _Chat() {
className={styles["attach-file"]}
title={file.originalFilename}
>
<span>{file.originalFilename}</span>
<div className={styles["attach-file-info"]}>
{file.originalFilename}
</div>
<div className={styles["attach-file-mask"]}>
<DeleteFileButton
deleteFile={() => {

View File

@ -70,6 +70,7 @@ const en: LocaleType = {
EnablePlugins: "Enable Plugins",
DisablePlugins: "Disable Plugins",
UploadImage: "Upload Images",
UploadFle: "Upload Files",
},
Rename: "Rename Chat",
Typing: "Typing…",

View File

@ -26,6 +26,7 @@ export interface ChatToolMessage {
toolInput?: string;
}
import { createPersistStore } from "../utils/store";
import { FileInfo } from "../client/platforms/utils";
export type ChatMessage = RequestMessage & {
date: string;
@ -304,7 +305,11 @@ export const useChatStore = createPersistStore(
get().summarizeSession();
},
async onUserInput(content: string, attachImages?: string[]) {
async onUserInput(
content: string,
attachImages?: string[],
attachFiles?: FileInfo[],
) {
const session = get().currentSession();
const modelConfig = session.mask.modelConfig;
@ -335,6 +340,7 @@ export const useChatStore = createPersistStore(
let userMessage: ChatMessage = createMessage({
role: "user",
content: mContent,
fileInfos: attachFiles,
});
const botMessage: ChatMessage = createMessage({
role: "assistant",
@ -359,7 +365,6 @@ export const useChatStore = createPersistStore(
m.lang === (getLang() == "cn" ? getLang() : "en")) &&
m.enable,
);
// save user's and bot's message
get().updateCurrentSession((session) => {
const savedUserMessage = {
@ -374,13 +379,23 @@ export const useChatStore = createPersistStore(
if (
config.pluginConfig.enable &&
session.mask.usePlugins &&
allPlugins.length > 0 &&
(allPlugins.length > 0 || !!process.env.NEXT_PUBLIC_ENABLE_RAG) &&
modelConfig.model.startsWith("gpt") &&
modelConfig.model != "gpt-4-vision-preview"
) {
console.log("[ToolAgent] start");
const pluginToolNames = allPlugins.map((m) => m.toolName);
if (!!process.env.NEXT_PUBLIC_ENABLE_RAG)
pluginToolNames.push("rag-search");
if (attachFiles && attachFiles.length > 0) {
console.log("crete rag store");
await api.llm.createRAGSore({
chatSessionId: session.id,
fileInfos: attachFiles,
});
}
api.llm.toolAgentChat({
chatSessionId: session.id,
messages: sendMessages,
config: { ...modelConfig, stream: true },
agentConfig: { ...pluginConfig, useTools: pluginToolNames },

View File

@ -21,6 +21,7 @@
"@aws-sdk/s3-request-presigner": "^3.414.0",
"@fortaine/fetch-event-source": "^3.0.6",
"@hello-pangea/dnd": "^16.5.0",
"@langchain/cohere": "^0.0.6",
"@langchain/community": "0.0.30",
"@langchain/openai": "0.0.14",
"@langchain/pinecone": "^0.0.4",
@ -31,20 +32,24 @@
"@vercel/speed-insights": "^1.0.2",
"axios": "^0.26.0",
"cheerio": "^1.0.0-rc.12",
"d3-dsv": "2",
"duck-duck-scrape": "^2.2.4",
"emoji-picker-react": "^4.9.2",
"encoding": "^0.1.13",
"epub2": "^3.0.2",
"fuse.js": "^7.0.0",
"html-entities": "^2.4.0",
"html-to-image": "^1.11.11",
"html-to-text": "^9.0.5",
"https-proxy-agent": "^7.0.2",
"langchain": "0.1.20",
"langchain": "0.1.30",
"mammoth": "^1.7.1",
"mermaid": "^10.6.1",
"mime": "^4.0.1",
"nanoid": "^5.0.3",
"next": "^13.4.9",
"node-fetch": "^3.3.1",
"officeparser": "^4.0.8",
"openai": "^4.28.4",
"pdf-parse": "^1.1.1",
"react": "^18.2.0",
@ -58,6 +63,7 @@
"remark-math": "^5.1.1",
"sass": "^1.59.2",
"spark-md5": "^3.0.2",
"srt-parser-2": "^1.2.3",
"use-debounce": "^9.0.4",
"zustand": "^4.3.8"
},
@ -82,7 +88,7 @@
},
"resolutions": {
"lint-staged/yaml": "^2.2.2",
"@langchain/core": "0.1.30",
"@langchain/core": "0.1.53",
"openai": "4.28.4"
},
"packageManager": "yarn@1.22.19"

681
yarn.lock

File diff suppressed because it is too large Load Diff