coai/utils/tokenizer.go
2023-11-04 22:20:26 +08:00

128 lines
5.1 KiB
Go

package utils
import (
"chat/globals"
"fmt"
"github.com/pkoukk/tiktoken-go"
"strings"
)
// Using https://github.com/pkoukk/tiktoken-go
// To count number of tokens of openai chat messages
// OpenAI Cookbook: https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
func GetWeightByModel(model string) int {
switch model {
case globals.GPT3TurboInstruct, globals.Claude2, globals.Claude2100k:
return 2
case globals.GPT3Turbo, globals.GPT3Turbo0613,
globals.GPT3Turbo16k, globals.GPT3Turbo16k0613,
globals.GPT4, globals.GPT4Vision, globals.Dalle3, globals.GPT40314, globals.GPT40613,
globals.GPT432k, globals.GPT432k0613, globals.GPT432k0314,
globals.SparkDesk, globals.SparkDeskV2, globals.SparkDeskV3,
globals.QwenTurbo, globals.QwenPlus, globals.QwenTurboNet, globals.QwenPlusNet:
return 3
case globals.GPT3Turbo0301, globals.GPT3Turbo16k0301,
globals.ZhiPuChatGLMLite, globals.ZhiPuChatGLMStd, globals.ZhiPuChatGLMPro:
return 4 // every message follows <|start|>{role/name}\n{content}<|end|>\n
default:
if strings.Contains(model, globals.GPT3Turbo) {
// warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.
return GetWeightByModel(globals.GPT3Turbo0613)
} else if strings.Contains(model, globals.GPT4) {
// warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.
return GetWeightByModel(globals.GPT40613)
} else if strings.Contains(model, globals.Claude2) {
// warning: claude-2 may update over time. Returning num tokens assuming claude-2-100k.
return GetWeightByModel(globals.Claude2100k)
} else {
// not implemented: See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens
panic(fmt.Errorf("not implemented for model %s", model))
}
}
}
func NumTokensFromMessages(messages []globals.Message, model string) (tokens int) {
weight := GetWeightByModel(model)
tkm, err := tiktoken.EncodingForModel(model)
if err != nil {
// can not encode messages, use length of messages as a proxy for number of tokens
// using rune instead of byte to account for unicode characters (e.g. emojis, non-english characters)
data := Marshal(messages)
return len([]rune(data)) * weight
}
for _, message := range messages {
tokens += weight
tokens += len(tkm.Encode(message.Content, nil, nil))
tokens += len(tkm.Encode(message.Role, nil, nil))
}
tokens += 3 // every reply is primed with <|start|>assistant<|message|>
return tokens
}
func CountTokenPrice(messages []globals.Message, model string) int {
return NumTokensFromMessages(messages, model)
}
func CountInputToken(model string, v []globals.Message) float32 {
switch model {
case globals.GPT3Turbo, globals.GPT3Turbo0613, globals.GPT3Turbo0301, globals.GPT3TurboInstruct,
globals.GPT3Turbo16k, globals.GPT3Turbo16k0613, globals.GPT3Turbo16k0301:
return 0
case globals.GPT4, globals.GPT4Vision, globals.Dalle3, globals.GPT40314, globals.GPT40613:
return float32(CountTokenPrice(v, model)) / 1000 * 2.1 * 0.6
case globals.GPT432k, globals.GPT432k0613, globals.GPT432k0314:
return float32(CountTokenPrice(v, model)) / 1000 * 4.2
case globals.SparkDesk:
return 0 // float32(CountTokenPrice(v, model)) / 1000 * 0.15 free now
case globals.SparkDeskV2, globals.SparkDeskV3:
return 0 // float32(CountTokenPrice(v, model)) / 1000 * 0.3 free now
case globals.Claude2:
return 0
case globals.Claude2100k:
return float32(CountTokenPrice(v, model)) / 1000 * 0.05
case globals.ZhiPuChatGLMPro:
return float32(CountTokenPrice(v, model)) / 1000 * 0.1
case globals.ZhiPuChatGLMStd:
return float32(CountTokenPrice(v, model)) / 1000 * 0.05
case globals.QwenTurbo, globals.QwenTurboNet:
return float32(CountTokenPrice(v, model)) / 1000 * 0.08
case globals.QwenPlus, globals.QwenPlusNet:
return float32(CountTokenPrice(v, model)) / 1000 * 0.2
default:
return 0
}
}
func CountOutputToken(model string, t int) float32 {
switch model {
case globals.GPT3Turbo, globals.GPT3Turbo0613, globals.GPT3Turbo0301, globals.GPT3TurboInstruct,
globals.GPT3Turbo16k, globals.GPT3Turbo16k0613, globals.GPT3Turbo16k0301:
return 0
case globals.GPT4, globals.GPT4Vision, globals.Dalle3, globals.GPT40314, globals.GPT40613:
return float32(t*GetWeightByModel(model)) / 1000 * 4.3 * 0.6
case globals.GPT432k, globals.GPT432k0613, globals.GPT432k0314:
return float32(t*GetWeightByModel(model)) / 1000 * 8.6
case globals.SparkDesk:
return 0 // float32(t*GetWeightByModel(model)) / 1000 * 0.15 free now
case globals.SparkDeskV2, globals.SparkDeskV3:
return 0 // float32(t*GetWeightByModel(model)) / 1000 * 0.3 free now
case globals.Claude2:
return 0
case globals.Claude2100k:
return float32(t*GetWeightByModel(model)) / 1000 * 0.05
case globals.ZhiPuChatGLMPro:
return float32(t*GetWeightByModel(model)) / 1000 * 0.1
case globals.ZhiPuChatGLMStd:
return float32(t*GetWeightByModel(model)) / 1000 * 0.05
case globals.QwenTurbo, globals.QwenTurboNet:
return float32(t*GetWeightByModel(model)) / 1000 * 0.08
case globals.QwenPlus, globals.QwenPlusNet:
return float32(t*GetWeightByModel(model)) / 1000 * 0.2
default:
return 0
}
}