mirror of
https://github.com/ChatGPTNextWeb/ChatGPT-Next-Web.git
synced 2025-05-28 16:40:20 +09:00

修改: app/api/bedrock/models.ts 修改: app/api/bedrock/utils.ts 修改: app/client/api.ts 修改: app/client/platforms/bedrock.ts 新文件: app/components/chat-actions.tsx 修改: app/components/chat.module.scss 修改: app/components/chat.tsx 修改: app/constant.ts 新文件: app/icons/document.svg 修改: app/locales/cn.ts 修改: app/locales/en.ts
418 lines
12 KiB
TypeScript
418 lines
12 KiB
TypeScript
import { ApiPath } from "../../constant";
|
|
import {
|
|
ChatOptions,
|
|
getHeaders,
|
|
LLMApi,
|
|
LLMUsage,
|
|
MultimodalContent,
|
|
SpeechOptions,
|
|
} from "../api";
|
|
import { useAccessStore, useAppConfig } from "../../store";
|
|
import Locale from "../../locales";
|
|
import {
|
|
getMessageImages,
|
|
getMessageTextContent,
|
|
isVisionModel,
|
|
} from "../../utils";
|
|
import { fetch } from "../../utils/stream";
|
|
|
|
const MAX_IMAGE_SIZE = 1024 * 1024 * 4; // 4MB limit
|
|
|
|
export class BedrockApi implements LLMApi {
|
|
speech(options: SpeechOptions): Promise<ArrayBuffer> {
|
|
throw new Error("Speech not implemented for Bedrock.");
|
|
}
|
|
|
|
extractMessage(res: any) {
|
|
console.log("[Response] bedrock response: ", res);
|
|
if (Array.isArray(res?.content)) {
|
|
return res.content;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
async processDocument(
|
|
file: File,
|
|
): Promise<{ display: string; content: MultimodalContent }> {
|
|
return new Promise((resolve, reject) => {
|
|
const reader = new FileReader();
|
|
reader.onload = async () => {
|
|
try {
|
|
const arrayBuffer = reader.result as ArrayBuffer;
|
|
const format = file.name.split(".").pop()?.toLowerCase();
|
|
|
|
if (!format) {
|
|
throw new Error("Could not determine file format");
|
|
}
|
|
|
|
// Format file size
|
|
const size = file.size;
|
|
let sizeStr = "";
|
|
if (size < 1024) {
|
|
sizeStr = size + " B";
|
|
} else if (size < 1024 * 1024) {
|
|
sizeStr = (size / 1024).toFixed(2) + " KB";
|
|
} else {
|
|
sizeStr = (size / (1024 * 1024)).toFixed(2) + " MB";
|
|
}
|
|
|
|
// Create display text
|
|
const displayText = `Document: ${file.name} (${sizeStr})`;
|
|
|
|
// Create actual content
|
|
const content: MultimodalContent = {
|
|
type: "document",
|
|
document: {
|
|
format: format as
|
|
| "pdf"
|
|
| "csv"
|
|
| "doc"
|
|
| "docx"
|
|
| "xls"
|
|
| "xlsx"
|
|
| "html"
|
|
| "txt"
|
|
| "md",
|
|
name: file.name,
|
|
source: {
|
|
bytes: Buffer.from(arrayBuffer).toString("base64"),
|
|
},
|
|
},
|
|
};
|
|
|
|
resolve({
|
|
display: displayText,
|
|
content: content,
|
|
});
|
|
} catch (e) {
|
|
reject(e);
|
|
}
|
|
};
|
|
reader.onerror = () => reject(reader.error);
|
|
reader.readAsArrayBuffer(file);
|
|
});
|
|
}
|
|
|
|
async processImage(url: string): Promise<MultimodalContent> {
|
|
if (url.startsWith("data:")) {
|
|
const base64Match = url.match(/^data:image\/([a-zA-Z]*);base64,([^"]*)/);
|
|
if (base64Match) {
|
|
const format = base64Match[1].toLowerCase();
|
|
const base64Data = base64Match[2];
|
|
|
|
// Check base64 size
|
|
const binarySize = atob(base64Data).length;
|
|
if (binarySize > MAX_IMAGE_SIZE) {
|
|
throw new Error(
|
|
`Image size (${(binarySize / (1024 * 1024)).toFixed(
|
|
2,
|
|
)}MB) exceeds maximum allowed size of 4MB`,
|
|
);
|
|
}
|
|
|
|
return {
|
|
type: "image_url",
|
|
image_url: {
|
|
url: url,
|
|
},
|
|
};
|
|
}
|
|
throw new Error("Invalid data URL format");
|
|
}
|
|
|
|
// For non-data URLs, fetch and convert to base64
|
|
try {
|
|
const response = await fetch(url);
|
|
if (!response.ok) {
|
|
throw new Error(`Failed to fetch image: ${response.statusText}`);
|
|
}
|
|
|
|
const blob = await response.blob();
|
|
if (blob.size > MAX_IMAGE_SIZE) {
|
|
throw new Error(
|
|
`Image size (${(blob.size / (1024 * 1024)).toFixed(
|
|
2,
|
|
)}MB) exceeds maximum allowed size of 4MB`,
|
|
);
|
|
}
|
|
|
|
const reader = new FileReader();
|
|
const base64 = await new Promise<string>((resolve, reject) => {
|
|
reader.onloadend = () => resolve(reader.result as string);
|
|
reader.onerror = () => reject(new Error("Failed to read image data"));
|
|
reader.readAsDataURL(blob);
|
|
});
|
|
|
|
return {
|
|
type: "image_url",
|
|
image_url: {
|
|
url: base64,
|
|
},
|
|
};
|
|
} catch (error) {
|
|
console.error("[Bedrock] Image processing error:", error);
|
|
throw error;
|
|
}
|
|
}
|
|
|
|
async chat(options: ChatOptions): Promise<void> {
|
|
const accessStore = useAccessStore.getState();
|
|
const modelConfig = {
|
|
...useAppConfig.getState().modelConfig,
|
|
...options.config,
|
|
};
|
|
|
|
if (
|
|
!accessStore.awsRegion ||
|
|
!accessStore.awsAccessKeyId ||
|
|
!accessStore.awsSecretAccessKey
|
|
) {
|
|
console.log("AWS credentials are not set");
|
|
let responseText = "";
|
|
const responseTexts = [responseText];
|
|
responseTexts.push(Locale.Error.Unauthorized);
|
|
responseText = responseTexts.join("\n\n");
|
|
options.onFinish(responseText);
|
|
return;
|
|
}
|
|
|
|
const controller = new AbortController();
|
|
options.onController?.(controller);
|
|
|
|
const headers: Record<string, string> = {
|
|
...getHeaders(),
|
|
"X-Region": accessStore.awsRegion,
|
|
"X-Access-Key": accessStore.awsAccessKeyId,
|
|
"X-Secret-Key": accessStore.awsSecretAccessKey,
|
|
};
|
|
|
|
if (accessStore.awsSessionToken) {
|
|
headers["X-Session-Token"] = accessStore.awsSessionToken;
|
|
}
|
|
|
|
try {
|
|
// Process messages to handle multimodal content
|
|
const messages = await Promise.all(
|
|
options.messages.map(async (msg) => {
|
|
if (Array.isArray(msg.content)) {
|
|
// For vision models, include both text and images
|
|
if (isVisionModel(options.config.model)) {
|
|
const images = getMessageImages(msg);
|
|
const content: MultimodalContent[] = [];
|
|
|
|
// Process documents first
|
|
for (const item of msg.content) {
|
|
// Check for document content
|
|
if (item && typeof item === "object") {
|
|
if ("file" in item && item.file instanceof File) {
|
|
try {
|
|
console.log(
|
|
"[Bedrock] Processing document:",
|
|
item.file.name,
|
|
);
|
|
const { content: docContent } =
|
|
await this.processDocument(item.file);
|
|
content.push(docContent);
|
|
} catch (e) {
|
|
console.error("[Bedrock] Failed to process document:", e);
|
|
}
|
|
} else if ("document" in item && item.document) {
|
|
// If document content is already processed, include it directly
|
|
content.push(item as MultimodalContent);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add text content if it's not a document display text
|
|
const text = getMessageTextContent(msg);
|
|
if (text && !text.startsWith("Document: ")) {
|
|
content.push({ type: "text", text });
|
|
}
|
|
|
|
// Process images with size check and error handling
|
|
for (const url of images) {
|
|
try {
|
|
const imageContent = await this.processImage(url);
|
|
content.push(imageContent);
|
|
} catch (e) {
|
|
console.error("[Bedrock] Failed to process image:", e);
|
|
// Add error message as text content
|
|
content.push({
|
|
type: "text",
|
|
text: `Error processing image: ${e.message}`,
|
|
});
|
|
}
|
|
}
|
|
|
|
// Only return content if there is any
|
|
if (content.length > 0) {
|
|
return { ...msg, content };
|
|
}
|
|
}
|
|
// For non-vision models, only include text
|
|
return { ...msg, content: getMessageTextContent(msg) };
|
|
}
|
|
return msg;
|
|
}),
|
|
);
|
|
|
|
// Filter out empty messages
|
|
const filteredMessages = messages.filter((msg) => {
|
|
if (Array.isArray(msg.content)) {
|
|
return msg.content.length > 0;
|
|
}
|
|
return msg.content !== "";
|
|
});
|
|
|
|
const requestBody = {
|
|
messages: filteredMessages,
|
|
modelId: options.config.model,
|
|
inferenceConfig: {
|
|
maxTokens: modelConfig.max_tokens,
|
|
temperature: modelConfig.temperature,
|
|
topP: modelConfig.top_p,
|
|
stopSequences: [],
|
|
},
|
|
};
|
|
|
|
console.log(
|
|
"[Bedrock] Request body:",
|
|
JSON.stringify(
|
|
{
|
|
...requestBody,
|
|
messages: requestBody.messages.map((msg) => ({
|
|
...msg,
|
|
content: Array.isArray(msg.content)
|
|
? msg.content.map((c) => ({
|
|
type: c.type,
|
|
...(c.document
|
|
? {
|
|
document: {
|
|
format: c.document.format,
|
|
name: c.document.name,
|
|
},
|
|
}
|
|
: {}),
|
|
...(c.image_url ? { image_url: { url: "[BINARY]" } } : {}),
|
|
...(c.text ? { text: c.text } : {}),
|
|
}))
|
|
: msg.content,
|
|
})),
|
|
},
|
|
null,
|
|
2,
|
|
),
|
|
);
|
|
|
|
const shouldStream = !!options.config.stream;
|
|
const conversePath = `${ApiPath.Bedrock}/converse`;
|
|
|
|
if (shouldStream) {
|
|
let response = await fetch(conversePath, {
|
|
method: "POST",
|
|
headers: {
|
|
...headers,
|
|
"X-Stream": "true",
|
|
},
|
|
body: JSON.stringify(requestBody),
|
|
signal: controller.signal,
|
|
});
|
|
|
|
if (!response.ok) {
|
|
const error = await response.text();
|
|
throw new Error(`Bedrock API error: ${error}`);
|
|
}
|
|
|
|
let buffer = "";
|
|
const reader = response.body?.getReader();
|
|
if (!reader) {
|
|
throw new Error("No response body reader available");
|
|
}
|
|
|
|
let currentContent = "";
|
|
let isFirstMessage = true;
|
|
|
|
while (true) {
|
|
const { done, value } = await reader.read();
|
|
if (done) break;
|
|
|
|
// Convert the chunk to text and add to buffer
|
|
const chunk = new TextDecoder().decode(value);
|
|
buffer += chunk;
|
|
|
|
// Process complete messages from buffer
|
|
let newlineIndex;
|
|
while ((newlineIndex = buffer.indexOf("\n")) !== -1) {
|
|
const line = buffer.slice(0, newlineIndex).trim();
|
|
buffer = buffer.slice(newlineIndex + 1);
|
|
|
|
if (line.startsWith("data: ")) {
|
|
try {
|
|
const event = JSON.parse(line.slice(6));
|
|
|
|
if (event.type === "messageStart") {
|
|
if (isFirstMessage) {
|
|
isFirstMessage = false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (event.type === "text" && event.content) {
|
|
currentContent += event.content;
|
|
options.onUpdate?.(currentContent, event.content);
|
|
}
|
|
|
|
if (event.type === "messageStop") {
|
|
options.onFinish(currentContent);
|
|
return;
|
|
}
|
|
|
|
if (event.type === "error") {
|
|
throw new Error(event.message || "Unknown error");
|
|
}
|
|
} catch (e) {
|
|
console.error("[Bedrock] Failed to parse stream event:", e);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we reach here without a messageStop event, finish with current content
|
|
options.onFinish(currentContent);
|
|
} else {
|
|
const response = await fetch(conversePath, {
|
|
method: "POST",
|
|
headers,
|
|
body: JSON.stringify(requestBody),
|
|
signal: controller.signal,
|
|
});
|
|
|
|
if (!response.ok) {
|
|
const error = await response.text();
|
|
throw new Error(`Bedrock API error: ${error}`);
|
|
}
|
|
|
|
const responseBody = await response.json();
|
|
const content = this.extractMessage(responseBody);
|
|
options.onFinish(content);
|
|
}
|
|
} catch (e) {
|
|
console.error("[Bedrock] Chat error:", e);
|
|
options.onError?.(e as Error);
|
|
}
|
|
}
|
|
|
|
async usage(): Promise<LLMUsage> {
|
|
// Bedrock usage is tracked through AWS billing
|
|
return {
|
|
used: 0,
|
|
total: 0,
|
|
};
|
|
}
|
|
|
|
async models() {
|
|
// Return empty array as models are configured through AWS console
|
|
return [];
|
|
}
|
|
}
|