ChatGPT-Next-Web/app/api/langchain-tools/myfiles_browser.ts
2024-07-07 15:41:58 +08:00

79 lines
2.5 KiB
TypeScript

import { Tool } from "@langchain/core/tools";
import { CallbackManagerForToolRun } from "@langchain/core/callbacks/manager";
import { BaseLanguageModel } from "langchain/dist/base_language";
import { formatDocumentsAsString } from "langchain/util/document";
import { Embeddings } from "langchain/dist/embeddings/base.js";
import { getServerSideConfig } from "@/app/config/server";
import { SupabaseVectorStore } from "@langchain/community/vectorstores/supabase";
import { createClient } from "@supabase/supabase-js";
import { z } from "zod";
import { StructuredTool } from "@langchain/core/tools";
export class MyFilesBrowser extends StructuredTool {
static lc_name() {
return "MyFilesBrowser";
}
get lc_namespace() {
return [...super.lc_namespace, "myfilesbrowser"];
}
private sessionId: string;
private model: BaseLanguageModel;
private embeddings: Embeddings;
constructor(
sessionId: string,
model: BaseLanguageModel,
embeddings: Embeddings,
) {
super();
this.sessionId = sessionId;
this.model = model;
this.embeddings = embeddings;
}
schema = z.object({
queries: z.array(z.string()).describe("A query list."),
});
/** @ignore */
async _call({ queries }: z.infer<typeof this.schema>) {
const serverConfig = getServerSideConfig();
if (!serverConfig.isEnableRAG)
throw new Error("env ENABLE_RAG not configured");
const privateKey = process.env.SUPABASE_PRIVATE_KEY;
if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);
const url = process.env.SUPABASE_URL;
if (!url) throw new Error(`Expected env var SUPABASE_URL`);
const client = createClient(url, privateKey);
const vectorStore = new SupabaseVectorStore(this.embeddings, {
client,
tableName: "documents",
queryName: "match_documents",
});
let context;
const returnCunt = serverConfig.ragReturnCount
? parseInt(serverConfig.ragReturnCount, 10)
: 4;
console.log("[myfiles_browser]", { queries, returnCunt });
let documents: any[] = [];
for (var i = 0; i < queries.length; i++) {
let results = await vectorStore.similaritySearch(queries[i], returnCunt, {
sessionId: this.sessionId,
});
results.forEach((item) => documents.push(item));
}
context = formatDocumentsAsString(documents);
console.log("[myfiles_browser]", { context });
return context;
}
name = "myfiles_browser";
description = `queries to a search over the file(s) uploaded in the current conversation and displays the results.`;
}