mirror of
https://github.com/ChatGPTNextWeb/ChatGPT-Next-Web.git
synced 2025-05-21 13:10:16 +09:00
860 lines
25 KiB
TypeScript
860 lines
25 KiB
TypeScript
"use client";
|
|
import { ChatOptions, getHeaders, LLMApi, SpeechOptions } from "../api";
|
|
import {
|
|
useAppConfig,
|
|
usePluginStore,
|
|
useChatStore,
|
|
useAccessStore,
|
|
ChatMessageTool,
|
|
} from "@/app/store";
|
|
import { preProcessImageContent } from "@/app/utils/chat";
|
|
import { getMessageTextContent, isVisionModel } from "@/app/utils";
|
|
import { ApiPath, BEDROCK_BASE_URL, REQUEST_TIMEOUT_MS } from "@/app/constant";
|
|
import { getClientConfig } from "@/app/config/client";
|
|
import {
|
|
extractMessage,
|
|
processMessage,
|
|
processChunks,
|
|
parseEventData,
|
|
sign,
|
|
} from "@/app/utils/aws";
|
|
import { prettyObject } from "@/app/utils/format";
|
|
import Locale from "@/app/locales";
|
|
import { encrypt } from "@/app/utils/aws";
|
|
|
|
const ClaudeMapper = {
|
|
assistant: "assistant",
|
|
user: "user",
|
|
system: "user",
|
|
} as const;
|
|
|
|
const MistralMapper = {
|
|
system: "system",
|
|
user: "user",
|
|
assistant: "assistant",
|
|
} as const;
|
|
type MistralRole = keyof typeof MistralMapper;
|
|
|
|
interface Tool {
|
|
function?: {
|
|
name?: string;
|
|
description?: string;
|
|
parameters?: any;
|
|
};
|
|
}
|
|
const isApp = !!getClientConfig()?.isApp;
|
|
// const isApp = true;
|
|
async function getBedrockHeaders(
|
|
modelId: string,
|
|
chatPath: string,
|
|
finalRequestBody: any,
|
|
shouldStream: boolean,
|
|
): Promise<Record<string, string>> {
|
|
const accessStore = useAccessStore.getState();
|
|
const bedrockHeaders = isApp
|
|
? await sign({
|
|
method: "POST",
|
|
url: chatPath,
|
|
region: accessStore.awsRegion,
|
|
accessKeyId: accessStore.awsAccessKey,
|
|
secretAccessKey: accessStore.awsSecretKey,
|
|
body: finalRequestBody,
|
|
service: "bedrock",
|
|
headers: {},
|
|
isStreaming: shouldStream,
|
|
})
|
|
: getHeaders();
|
|
|
|
if (!isApp) {
|
|
const { awsRegion, awsAccessKey, awsSecretKey, encryptionKey } =
|
|
accessStore;
|
|
|
|
const bedrockHeadersConfig = {
|
|
XModelID: modelId,
|
|
XEncryptionKey: encryptionKey,
|
|
ShouldStream: String(shouldStream),
|
|
Authorization: await createAuthHeader(
|
|
awsRegion,
|
|
awsAccessKey,
|
|
awsSecretKey,
|
|
encryptionKey,
|
|
),
|
|
};
|
|
|
|
Object.assign(bedrockHeaders, bedrockHeadersConfig);
|
|
}
|
|
|
|
return bedrockHeaders;
|
|
}
|
|
|
|
// Helper function to create Authorization header
|
|
async function createAuthHeader(
|
|
region: string,
|
|
accessKey: string,
|
|
secretKey: string,
|
|
encryptionKey: string,
|
|
): Promise<string> {
|
|
const encryptedValues = await Promise.all([
|
|
encrypt(region, encryptionKey),
|
|
encrypt(accessKey, encryptionKey),
|
|
encrypt(secretKey, encryptionKey),
|
|
]);
|
|
|
|
return `Bearer ${encryptedValues.join(":")}`;
|
|
}
|
|
|
|
export class BedrockApi implements LLMApi {
|
|
speech(options: SpeechOptions): Promise<ArrayBuffer> {
|
|
throw new Error("Speech not implemented for Bedrock.");
|
|
}
|
|
|
|
formatRequestBody(messages: ChatOptions["messages"], modelConfig: any) {
|
|
const model = modelConfig.model;
|
|
const visionModel = isVisionModel(modelConfig.model);
|
|
|
|
// Get tools if available
|
|
const [tools] = usePluginStore
|
|
.getState()
|
|
.getAsTools(useChatStore.getState().currentSession().mask?.plugin || []);
|
|
|
|
const toolsArray = (tools as Tool[]) || [];
|
|
|
|
// Handle Nova models
|
|
if (model.includes("amazon.nova")) {
|
|
// Extract system message if present
|
|
const systemMessage = messages.find((m) => m.role === "system");
|
|
const conversationMessages = messages.filter((m) => m.role !== "system");
|
|
|
|
const requestBody: any = {
|
|
schemaVersion: "messages-v1",
|
|
messages: conversationMessages.map((message) => {
|
|
const content = Array.isArray(message.content)
|
|
? message.content
|
|
: [{ text: getMessageTextContent(message) }];
|
|
|
|
return {
|
|
role: message.role,
|
|
content: content.map((item: any) => {
|
|
// Handle text content
|
|
if (item.text || typeof item === "string") {
|
|
return { text: item.text || item };
|
|
}
|
|
// Handle image content
|
|
if (item.image_url?.url) {
|
|
const { url = "" } = item.image_url;
|
|
const colonIndex = url.indexOf(":");
|
|
const semicolonIndex = url.indexOf(";");
|
|
const comma = url.indexOf(",");
|
|
|
|
// Extract format from mime type
|
|
const mimeType = url.slice(colonIndex + 1, semicolonIndex);
|
|
const format = mimeType.split("/")[1];
|
|
const data = url.slice(comma + 1);
|
|
|
|
return {
|
|
image: {
|
|
format,
|
|
source: {
|
|
bytes: data,
|
|
},
|
|
},
|
|
};
|
|
}
|
|
return item;
|
|
}),
|
|
};
|
|
}),
|
|
inferenceConfig: {
|
|
temperature: modelConfig.temperature || 0.7,
|
|
top_p: modelConfig.top_p || 0.9,
|
|
top_k: modelConfig.top_k || 50,
|
|
max_new_tokens: modelConfig.max_tokens || 1000,
|
|
stopSequences: modelConfig.stop || [],
|
|
},
|
|
};
|
|
|
|
// Add system message if present
|
|
if (systemMessage) {
|
|
requestBody.system = [
|
|
{
|
|
text: getMessageTextContent(systemMessage),
|
|
},
|
|
];
|
|
}
|
|
|
|
// Add tools if available - exact Nova format
|
|
if (toolsArray.length > 0) {
|
|
requestBody.toolConfig = {
|
|
tools: toolsArray.map((tool) => ({
|
|
toolSpec: {
|
|
name: tool?.function?.name || "",
|
|
description: tool?.function?.description || "",
|
|
inputSchema: {
|
|
json: {
|
|
type: "object",
|
|
properties: tool?.function?.parameters?.properties || {},
|
|
required: tool?.function?.parameters?.required || [],
|
|
},
|
|
},
|
|
},
|
|
})),
|
|
toolChoice: { auto: {} },
|
|
};
|
|
}
|
|
|
|
return requestBody;
|
|
}
|
|
|
|
// Handle Titan models
|
|
if (model.startsWith("amazon.titan")) {
|
|
const inputText = messages
|
|
.map((message) => {
|
|
return `${message.role}: ${getMessageTextContent(message)}`;
|
|
})
|
|
.join("\n\n");
|
|
|
|
return {
|
|
inputText,
|
|
textGenerationConfig: {
|
|
maxTokenCount: modelConfig.max_tokens,
|
|
temperature: modelConfig.temperature,
|
|
stopSequences: [],
|
|
},
|
|
};
|
|
}
|
|
|
|
// Handle LLaMA models
|
|
if (model.includes("meta.llama")) {
|
|
let prompt = "<|begin_of_text|>";
|
|
|
|
// Extract system message if present
|
|
const systemMessage = messages.find((m) => m.role === "system");
|
|
if (systemMessage) {
|
|
prompt += `<|start_header_id|>system<|end_header_id|>\n${getMessageTextContent(
|
|
systemMessage,
|
|
)}<|eot_id|>`;
|
|
}
|
|
|
|
// Format the conversation
|
|
const conversationMessages = messages.filter((m) => m.role !== "system");
|
|
for (const message of conversationMessages) {
|
|
const role = message.role === "assistant" ? "assistant" : "user";
|
|
const content = getMessageTextContent(message);
|
|
prompt += `<|start_header_id|>${role}<|end_header_id|>\n${content}<|eot_id|>`;
|
|
}
|
|
|
|
// Add the final assistant header to prompt completion
|
|
prompt += "<|start_header_id|>assistant<|end_header_id|>";
|
|
|
|
return {
|
|
prompt,
|
|
max_gen_len: modelConfig.max_tokens || 512,
|
|
temperature: modelConfig.temperature || 0.7,
|
|
top_p: modelConfig.top_p || 0.9,
|
|
};
|
|
}
|
|
|
|
// Handle Mistral models
|
|
if (model.includes("mistral.mistral")) {
|
|
const formattedMessages = messages.map((message) => ({
|
|
role: MistralMapper[message.role as MistralRole] || "user",
|
|
content: getMessageTextContent(message),
|
|
}));
|
|
|
|
const requestBody: any = {
|
|
messages: formattedMessages,
|
|
max_tokens: modelConfig.max_tokens || 4096,
|
|
temperature: modelConfig.temperature || 0.7,
|
|
top_p: modelConfig.top_p || 0.9,
|
|
};
|
|
|
|
// Add tools if available
|
|
if (toolsArray.length > 0) {
|
|
requestBody.tool_choice = "auto";
|
|
requestBody.tools = toolsArray.map((tool) => ({
|
|
type: "function",
|
|
function: {
|
|
name: tool?.function?.name,
|
|
description: tool?.function?.description,
|
|
parameters: tool?.function?.parameters,
|
|
},
|
|
}));
|
|
}
|
|
|
|
return requestBody;
|
|
}
|
|
|
|
// Handle Claude models
|
|
const keys = ["system", "user"];
|
|
// roles must alternate between "user" and "assistant" in claude, so add a fake assistant message between two user messages
|
|
for (let i = 0; i < messages.length - 1; i++) {
|
|
const message = messages[i];
|
|
const nextMessage = messages[i + 1];
|
|
|
|
if (keys.includes(message.role) && keys.includes(nextMessage.role)) {
|
|
messages[i] = [
|
|
message,
|
|
{
|
|
role: "assistant",
|
|
content: ";",
|
|
},
|
|
] as any;
|
|
}
|
|
}
|
|
const prompt = messages
|
|
.flat()
|
|
.filter((v) => {
|
|
if (!v.content) return false;
|
|
if (typeof v.content === "string" && !v.content.trim()) return false;
|
|
return true;
|
|
})
|
|
.map((v) => {
|
|
const { role, content } = v;
|
|
const insideRole = ClaudeMapper[role] ?? "user";
|
|
|
|
if (!visionModel || typeof content === "string") {
|
|
return {
|
|
role: insideRole,
|
|
content: getMessageTextContent(v),
|
|
};
|
|
}
|
|
return {
|
|
role: insideRole,
|
|
content: content
|
|
.filter((v) => v.image_url || v.text)
|
|
.map(({ type, text, image_url }) => {
|
|
if (type === "text") {
|
|
return {
|
|
type,
|
|
text: text!,
|
|
};
|
|
}
|
|
const { url = "" } = image_url || {};
|
|
const colonIndex = url.indexOf(":");
|
|
const semicolonIndex = url.indexOf(";");
|
|
const comma = url.indexOf(",");
|
|
|
|
const mimeType = url.slice(colonIndex + 1, semicolonIndex);
|
|
const encodeType = url.slice(semicolonIndex + 1, comma);
|
|
const data = url.slice(comma + 1);
|
|
|
|
return {
|
|
type: "image" as const,
|
|
source: {
|
|
type: encodeType,
|
|
media_type: mimeType,
|
|
data,
|
|
},
|
|
};
|
|
}),
|
|
};
|
|
});
|
|
|
|
if (prompt[0]?.role === "assistant") {
|
|
prompt.unshift({
|
|
role: "user",
|
|
content: ";",
|
|
});
|
|
}
|
|
const requestBody: any = {
|
|
anthropic_version: useAccessStore.getState().bedrockAnthropicVersion,
|
|
max_tokens: modelConfig.max_tokens,
|
|
messages: prompt,
|
|
temperature: modelConfig.temperature,
|
|
top_p: modelConfig.top_p || 0.9,
|
|
top_k: modelConfig.top_k || 5,
|
|
};
|
|
|
|
// Add tools if available for Claude models
|
|
if (toolsArray.length > 0 && model.includes("anthropic.claude")) {
|
|
requestBody.tools = toolsArray.map((tool) => ({
|
|
name: tool?.function?.name || "",
|
|
description: tool?.function?.description || "",
|
|
input_schema: tool?.function?.parameters || {},
|
|
}));
|
|
}
|
|
|
|
return requestBody;
|
|
}
|
|
|
|
async chat(options: ChatOptions) {
|
|
const accessStore = useAccessStore.getState();
|
|
|
|
const shouldStream = !!options.config.stream;
|
|
|
|
const modelConfig = {
|
|
...useAppConfig.getState().modelConfig,
|
|
...useChatStore.getState().currentSession().mask.modelConfig,
|
|
...{
|
|
model: options.config.model,
|
|
},
|
|
};
|
|
|
|
// try get base64image from local cache image_url
|
|
const messages: ChatOptions["messages"] = [];
|
|
for (const v of options.messages) {
|
|
const content = await preProcessImageContent(v.content);
|
|
messages.push({ role: v.role, content });
|
|
}
|
|
|
|
const controller = new AbortController();
|
|
options.onController?.(controller);
|
|
|
|
let finalRequestBody = this.formatRequestBody(messages, modelConfig);
|
|
|
|
try {
|
|
const bedrockAPIPath = `${BEDROCK_BASE_URL}/model/${
|
|
modelConfig.model
|
|
}/invoke${shouldStream ? "-with-response-stream" : ""}`;
|
|
const chatPath = isApp ? bedrockAPIPath : ApiPath.Bedrock + "/chat";
|
|
|
|
if (process.env.NODE_ENV !== "production") {
|
|
console.debug("[Bedrock Client] Request:", {
|
|
path: chatPath,
|
|
model: modelConfig.model,
|
|
messages: messages.length,
|
|
stream: shouldStream,
|
|
});
|
|
}
|
|
|
|
if (shouldStream) {
|
|
const [tools, funcs] = usePluginStore
|
|
.getState()
|
|
.getAsTools(
|
|
useChatStore.getState().currentSession().mask?.plugin || [],
|
|
);
|
|
return bedrockStream(
|
|
modelConfig.model,
|
|
chatPath,
|
|
finalRequestBody,
|
|
funcs,
|
|
controller,
|
|
// processToolMessage, include tool_calls message and tool call results
|
|
(
|
|
requestPayload: any[],
|
|
toolCallMessage: any,
|
|
toolCallResult: any[],
|
|
) => {
|
|
const modelId = modelConfig.model;
|
|
const isMistral = modelId.includes("mistral.mistral");
|
|
const isClaude = modelId.includes("anthropic.claude");
|
|
const isNova = modelId.includes("amazon.nova");
|
|
|
|
if (isClaude) {
|
|
// Format for Claude
|
|
// @ts-ignore
|
|
requestPayload?.messages?.splice(
|
|
// @ts-ignore
|
|
requestPayload?.messages?.length,
|
|
0,
|
|
{
|
|
role: "assistant",
|
|
content: toolCallMessage.tool_calls.map(
|
|
(tool: ChatMessageTool) => ({
|
|
type: "tool_use",
|
|
id: tool.id,
|
|
name: tool?.function?.name,
|
|
input: tool?.function?.arguments
|
|
? JSON.parse(tool?.function?.arguments)
|
|
: {},
|
|
}),
|
|
),
|
|
},
|
|
// @ts-ignore
|
|
...toolCallResult.map((result) => ({
|
|
role: "user",
|
|
content: [
|
|
{
|
|
type: "tool_result",
|
|
tool_use_id: result.tool_call_id,
|
|
content: result.content,
|
|
},
|
|
],
|
|
})),
|
|
);
|
|
} else if (isMistral) {
|
|
// Format for Mistral
|
|
// @ts-ignore
|
|
requestPayload?.messages?.splice(
|
|
// @ts-ignore
|
|
requestPayload?.messages?.length,
|
|
0,
|
|
{
|
|
role: "assistant",
|
|
content: "",
|
|
// @ts-ignore
|
|
tool_calls: toolCallMessage.tool_calls.map(
|
|
(tool: ChatMessageTool) => ({
|
|
id: tool.id,
|
|
function: {
|
|
name: tool?.function?.name,
|
|
arguments: tool?.function?.arguments || "{}",
|
|
},
|
|
}),
|
|
),
|
|
},
|
|
...toolCallResult.map((result) => ({
|
|
role: "tool",
|
|
tool_call_id: result.tool_call_id,
|
|
content: result.content,
|
|
})),
|
|
);
|
|
} else if (isNova) {
|
|
// Format for Nova - Updated format
|
|
// @ts-ignore
|
|
requestPayload?.messages?.splice(
|
|
// @ts-ignore
|
|
requestPayload?.messages?.length,
|
|
0,
|
|
{
|
|
role: "assistant",
|
|
content: [
|
|
{
|
|
toolUse: {
|
|
toolUseId: toolCallMessage.tool_calls[0].id,
|
|
name: toolCallMessage.tool_calls[0]?.function?.name,
|
|
input:
|
|
typeof toolCallMessage.tool_calls[0]?.function
|
|
?.arguments === "string"
|
|
? JSON.parse(
|
|
toolCallMessage.tool_calls[0]?.function
|
|
?.arguments,
|
|
)
|
|
: toolCallMessage.tool_calls[0]?.function
|
|
?.arguments || {},
|
|
},
|
|
},
|
|
],
|
|
},
|
|
{
|
|
role: "user",
|
|
content: [
|
|
{
|
|
toolResult: {
|
|
toolUseId: toolCallResult[0].tool_call_id,
|
|
content: [
|
|
{
|
|
json: {
|
|
content: toolCallResult[0].content,
|
|
},
|
|
},
|
|
],
|
|
},
|
|
},
|
|
],
|
|
},
|
|
);
|
|
} else {
|
|
console.warn(
|
|
`[Bedrock Client] Unhandled model type for tool calls: ${modelId}`,
|
|
);
|
|
}
|
|
},
|
|
options,
|
|
);
|
|
} else {
|
|
try {
|
|
controller.signal.onabort = () =>
|
|
options.onFinish("", new Response(null, { status: 400 }));
|
|
const newHeaders = await getBedrockHeaders(
|
|
modelConfig.model,
|
|
chatPath,
|
|
JSON.stringify(finalRequestBody),
|
|
shouldStream,
|
|
);
|
|
const res = await fetch(chatPath, {
|
|
method: "POST",
|
|
headers: newHeaders,
|
|
body: JSON.stringify(finalRequestBody),
|
|
});
|
|
const contentType = res.headers.get("content-type");
|
|
console.log(
|
|
"[Bedrock Not Stream Request] response content type: ",
|
|
contentType,
|
|
);
|
|
const resJson = await res.json();
|
|
const message = extractMessage(resJson);
|
|
options.onFinish(message, res);
|
|
} catch (e) {
|
|
const error =
|
|
e instanceof Error ? e : new Error("Unknown error occurred");
|
|
console.error("[Bedrock Client] Chat failed:", error.message);
|
|
options.onError?.(error);
|
|
}
|
|
}
|
|
} catch (e) {
|
|
console.error("[Bedrock Client] Chat error:", e);
|
|
options.onError?.(e as Error);
|
|
}
|
|
}
|
|
|
|
async usage() {
|
|
return { used: 0, total: 0 };
|
|
}
|
|
|
|
async models() {
|
|
return [];
|
|
}
|
|
}
|
|
|
|
function bedrockStream(
|
|
modelId: string,
|
|
chatPath: string,
|
|
requestPayload: any,
|
|
funcs: Record<string, Function>,
|
|
controller: AbortController,
|
|
processToolMessage: (
|
|
requestPayload: any,
|
|
toolCallMessage: any,
|
|
toolCallResult: any[],
|
|
) => void,
|
|
options: any,
|
|
) {
|
|
let responseText = "";
|
|
let remainText = "";
|
|
let finished = false;
|
|
let running = false;
|
|
let runTools: any[] = [];
|
|
let responseRes: Response;
|
|
let index = -1;
|
|
let chunks: Uint8Array[] = [];
|
|
let pendingChunk: Uint8Array | null = null;
|
|
|
|
function animateResponseText() {
|
|
if (finished || controller.signal.aborted) {
|
|
responseText += remainText;
|
|
console.log("[Response Animation] finished");
|
|
if (responseText?.length === 0) {
|
|
options.onError?.(new Error("empty response from server"));
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (remainText.length > 0) {
|
|
const fetchCount = Math.max(1, Math.round(remainText.length / 60));
|
|
const fetchText = remainText.slice(0, fetchCount);
|
|
responseText += fetchText;
|
|
remainText = remainText.slice(fetchCount);
|
|
options.onUpdate?.(responseText, fetchText);
|
|
}
|
|
|
|
requestAnimationFrame(animateResponseText);
|
|
}
|
|
|
|
animateResponseText();
|
|
|
|
const finish = () => {
|
|
if (!finished) {
|
|
if (!running && runTools.length > 0) {
|
|
const toolCallMessage = {
|
|
role: "assistant",
|
|
tool_calls: [...runTools],
|
|
};
|
|
running = true;
|
|
runTools.splice(0, runTools.length);
|
|
return Promise.all(
|
|
toolCallMessage.tool_calls.map((tool) => {
|
|
options?.onBeforeTool?.(tool);
|
|
const funcName = tool?.function?.name || tool?.name;
|
|
if (!funcName || !funcs[funcName]) {
|
|
console.error(`Function ${funcName} not found in funcs:`, funcs);
|
|
return Promise.reject(`Function ${funcName} not found`);
|
|
}
|
|
return Promise.resolve(
|
|
funcs[funcName](
|
|
tool?.function?.arguments
|
|
? JSON.parse(tool?.function?.arguments)
|
|
: {},
|
|
),
|
|
)
|
|
.then((res) => {
|
|
let content = res.data || res?.statusText;
|
|
content =
|
|
typeof content === "string"
|
|
? content
|
|
: JSON.stringify(content);
|
|
if (res.status >= 300) {
|
|
return Promise.reject(content);
|
|
}
|
|
return content;
|
|
})
|
|
.then((content) => {
|
|
options?.onAfterTool?.({
|
|
...tool,
|
|
content,
|
|
isError: false,
|
|
});
|
|
return content;
|
|
})
|
|
.catch((e) => {
|
|
options?.onAfterTool?.({
|
|
...tool,
|
|
isError: true,
|
|
errorMsg: e.toString(),
|
|
});
|
|
return e.toString();
|
|
})
|
|
.then((content) => ({
|
|
name: funcName,
|
|
role: "tool",
|
|
content,
|
|
tool_call_id: tool.id,
|
|
}));
|
|
}),
|
|
).then((toolCallResult) => {
|
|
processToolMessage(requestPayload, toolCallMessage, toolCallResult);
|
|
setTimeout(() => {
|
|
console.debug("[BedrockAPI for toolCallResult] restart");
|
|
running = false;
|
|
bedrockChatApi(modelId, chatPath, requestPayload, true);
|
|
}, 60);
|
|
});
|
|
}
|
|
if (running) {
|
|
return;
|
|
}
|
|
console.debug("[BedrockAPI] end");
|
|
finished = true;
|
|
options.onFinish(responseText + remainText, responseRes);
|
|
}
|
|
};
|
|
|
|
controller.signal.onabort = finish;
|
|
|
|
async function bedrockChatApi(
|
|
modelId: string,
|
|
chatPath: string,
|
|
requestPayload: any,
|
|
shouldStream: boolean,
|
|
) {
|
|
const requestTimeoutId = setTimeout(
|
|
() => controller.abort(),
|
|
REQUEST_TIMEOUT_MS,
|
|
);
|
|
|
|
const newHeaders = await getBedrockHeaders(
|
|
modelId,
|
|
chatPath,
|
|
JSON.stringify(requestPayload),
|
|
shouldStream,
|
|
);
|
|
try {
|
|
const res = await fetch(chatPath, {
|
|
method: "POST",
|
|
headers: newHeaders,
|
|
body: JSON.stringify(requestPayload),
|
|
redirect: "manual",
|
|
// @ts-ignore
|
|
duplex: "half",
|
|
signal: controller.signal,
|
|
});
|
|
|
|
clearTimeout(requestTimeoutId);
|
|
responseRes = res;
|
|
|
|
const contentType = res.headers.get("content-type");
|
|
// console.log(
|
|
// "[Bedrock Stream Request] response content type: ",
|
|
// contentType,
|
|
// );
|
|
|
|
if (contentType?.startsWith("text/plain")) {
|
|
responseText = await res.text();
|
|
return finish();
|
|
}
|
|
|
|
if (
|
|
!res.ok ||
|
|
res.status !== 200 ||
|
|
!contentType?.startsWith("application/vnd.amazon.eventstream")
|
|
) {
|
|
const responseTexts = [responseText];
|
|
let extraInfo = await res.text();
|
|
try {
|
|
const resJson = await res.clone().json();
|
|
extraInfo = prettyObject(resJson);
|
|
} catch {}
|
|
|
|
if (res.status === 401) {
|
|
responseTexts.push(Locale.Error.Unauthorized);
|
|
}
|
|
|
|
if (extraInfo) {
|
|
responseTexts.push(extraInfo);
|
|
}
|
|
|
|
responseText = responseTexts.join("\n\n");
|
|
return finish();
|
|
}
|
|
|
|
const reader = res.body?.getReader();
|
|
if (!reader) {
|
|
throw new Error("No response body reader available");
|
|
}
|
|
|
|
try {
|
|
while (true) {
|
|
const { done, value } = await reader.read();
|
|
if (done) {
|
|
if (pendingChunk) {
|
|
try {
|
|
const parsed = parseEventData(pendingChunk);
|
|
if (parsed) {
|
|
const result = processMessage(
|
|
parsed,
|
|
remainText,
|
|
runTools,
|
|
index,
|
|
);
|
|
remainText = result.remainText;
|
|
index = result.index;
|
|
}
|
|
} catch (e) {
|
|
console.error("[Final Chunk Process Error]:", e);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
chunks.push(value);
|
|
|
|
const result = processChunks(
|
|
chunks,
|
|
pendingChunk,
|
|
remainText,
|
|
runTools,
|
|
index,
|
|
);
|
|
chunks = result.chunks;
|
|
pendingChunk = result.pendingChunk;
|
|
remainText = result.remainText;
|
|
index = result.index;
|
|
}
|
|
} catch (err) {
|
|
console.error(
|
|
"[Bedrock Stream]:",
|
|
err instanceof Error ? err.message : "Stream processing failed",
|
|
);
|
|
throw new Error("Failed to process stream response");
|
|
} finally {
|
|
reader.releaseLock();
|
|
finish();
|
|
}
|
|
} catch (e) {
|
|
if (e instanceof Error && e.name === "AbortError") {
|
|
console.log("[Bedrock Client] Aborted by user");
|
|
return;
|
|
}
|
|
console.error(
|
|
"[Bedrock Request] Failed:",
|
|
e instanceof Error ? e.message : "Request failed",
|
|
);
|
|
options.onError?.(e);
|
|
throw new Error("Request processing failed");
|
|
}
|
|
}
|
|
|
|
console.debug("[BedrockAPI] start");
|
|
bedrockChatApi(modelId, chatPath, requestPayload, true);
|
|
}
|