mirror of
https://github.com/ChatGPTNextWeb/ChatGPT-Next-Web.git
synced 2025-05-19 04:00:16 +09:00
254 lines
7.4 KiB
TypeScript
254 lines
7.4 KiB
TypeScript
"use client";
|
||
// azure and openai, using same models. so using same LLMApi.
|
||
import { ApiPath, DEEPSEEK_BASE_URL, DeepSeek } from "@/app/constant";
|
||
import {
|
||
useAccessStore,
|
||
useAppConfig,
|
||
useChatStore,
|
||
ChatMessageTool,
|
||
usePluginStore,
|
||
} from "@/app/store";
|
||
import { streamWithThink } from "@/app/utils/chat";
|
||
import {
|
||
ChatOptions,
|
||
getHeaders,
|
||
LLMApi,
|
||
LLMModel,
|
||
SpeechOptions,
|
||
} from "../api";
|
||
import { getClientConfig } from "@/app/config/client";
|
||
import {
|
||
getMessageTextContent,
|
||
getMessageTextContentWithoutThinking,
|
||
getTimeoutMSByModel,
|
||
} from "@/app/utils";
|
||
import { RequestPayload } from "./openai";
|
||
import { fetch } from "@/app/utils/stream";
|
||
|
||
export class DeepSeekApi implements LLMApi {
|
||
private disableListModels = true;
|
||
|
||
path(path: string): string {
|
||
const accessStore = useAccessStore.getState();
|
||
|
||
let baseUrl = "";
|
||
|
||
if (accessStore.useCustomConfig) {
|
||
baseUrl = accessStore.deepseekUrl;
|
||
}
|
||
|
||
if (baseUrl.length === 0) {
|
||
const isApp = !!getClientConfig()?.isApp;
|
||
const apiPath = ApiPath.DeepSeek;
|
||
baseUrl = isApp ? DEEPSEEK_BASE_URL : apiPath;
|
||
}
|
||
|
||
if (baseUrl.endsWith("/")) {
|
||
baseUrl = baseUrl.slice(0, baseUrl.length - 1);
|
||
}
|
||
if (!baseUrl.startsWith("http") && !baseUrl.startsWith(ApiPath.DeepSeek)) {
|
||
baseUrl = "https://" + baseUrl;
|
||
}
|
||
|
||
console.log("[Proxy Endpoint] ", baseUrl, path);
|
||
|
||
return [baseUrl, path].join("/");
|
||
}
|
||
|
||
extractMessage(res: any) {
|
||
return res.choices?.at(0)?.message?.content ?? "";
|
||
}
|
||
|
||
speech(options: SpeechOptions): Promise<ArrayBuffer> {
|
||
throw new Error("Method not implemented.");
|
||
}
|
||
|
||
async chat(options: ChatOptions) {
|
||
const messages: ChatOptions["messages"] = [];
|
||
for (const v of options.messages) {
|
||
if (v.role === "assistant") {
|
||
const content = getMessageTextContentWithoutThinking(v);
|
||
messages.push({ role: v.role, content });
|
||
} else {
|
||
const content = getMessageTextContent(v);
|
||
messages.push({ role: v.role, content });
|
||
}
|
||
}
|
||
|
||
// 检测并修复消息顺序,确保除system外的第一个消息是user
|
||
const filteredMessages: ChatOptions["messages"] = [];
|
||
let hasFoundFirstUser = false;
|
||
|
||
for (const msg of messages) {
|
||
if (msg.role === "system") {
|
||
// Keep all system messages
|
||
filteredMessages.push(msg);
|
||
} else if (msg.role === "user") {
|
||
// User message directly added
|
||
filteredMessages.push(msg);
|
||
hasFoundFirstUser = true;
|
||
} else if (hasFoundFirstUser) {
|
||
// After finding the first user message, all subsequent non-system messages are retained.
|
||
filteredMessages.push(msg);
|
||
}
|
||
// If hasFoundFirstUser is false and it is not a system message, it will be skipped.
|
||
}
|
||
|
||
const modelConfig = {
|
||
...useAppConfig.getState().modelConfig,
|
||
...useChatStore.getState().currentSession().mask.modelConfig,
|
||
...{
|
||
model: options.config.model,
|
||
providerName: options.config.providerName,
|
||
},
|
||
};
|
||
|
||
const requestPayload: RequestPayload = {
|
||
messages: filteredMessages,
|
||
stream: options.config.stream,
|
||
model: modelConfig.model,
|
||
temperature: modelConfig.temperature,
|
||
presence_penalty: modelConfig.presence_penalty,
|
||
frequency_penalty: modelConfig.frequency_penalty,
|
||
top_p: modelConfig.top_p,
|
||
// max_tokens: Math.max(modelConfig.max_tokens, 1024),
|
||
// Please do not ask me why not send max_tokens, no reason, this param is just shit, I dont want to explain anymore.
|
||
};
|
||
|
||
console.log("[Request] openai payload: ", requestPayload);
|
||
|
||
const shouldStream = !!options.config.stream;
|
||
const controller = new AbortController();
|
||
options.onController?.(controller);
|
||
|
||
try {
|
||
const chatPath = this.path(DeepSeek.ChatPath);
|
||
const chatPayload = {
|
||
method: "POST",
|
||
body: JSON.stringify(requestPayload),
|
||
signal: controller.signal,
|
||
headers: getHeaders(),
|
||
};
|
||
|
||
// make a fetch request
|
||
const requestTimeoutId = setTimeout(
|
||
() => controller.abort(),
|
||
getTimeoutMSByModel(options.config.model),
|
||
);
|
||
|
||
if (shouldStream) {
|
||
const [tools, funcs] = usePluginStore
|
||
.getState()
|
||
.getAsTools(
|
||
useChatStore.getState().currentSession().mask?.plugin || [],
|
||
);
|
||
return streamWithThink(
|
||
chatPath,
|
||
requestPayload,
|
||
getHeaders(),
|
||
tools as any,
|
||
funcs,
|
||
controller,
|
||
// parseSSE
|
||
(text: string, runTools: ChatMessageTool[]) => {
|
||
// console.log("parseSSE", text, runTools);
|
||
const json = JSON.parse(text);
|
||
const choices = json.choices as Array<{
|
||
delta: {
|
||
content: string | null;
|
||
tool_calls: ChatMessageTool[];
|
||
reasoning_content: string | null;
|
||
};
|
||
}>;
|
||
const tool_calls = choices[0]?.delta?.tool_calls;
|
||
if (tool_calls?.length > 0) {
|
||
const index = tool_calls[0]?.index;
|
||
const id = tool_calls[0]?.id;
|
||
const args = tool_calls[0]?.function?.arguments;
|
||
if (id) {
|
||
runTools.push({
|
||
id,
|
||
type: tool_calls[0]?.type,
|
||
function: {
|
||
name: tool_calls[0]?.function?.name as string,
|
||
arguments: args,
|
||
},
|
||
});
|
||
} else {
|
||
// @ts-ignore
|
||
runTools[index]["function"]["arguments"] += args;
|
||
}
|
||
}
|
||
const reasoning = choices[0]?.delta?.reasoning_content;
|
||
const content = choices[0]?.delta?.content;
|
||
|
||
// Skip if both content and reasoning_content are empty or null
|
||
if (
|
||
(!reasoning || reasoning.length === 0) &&
|
||
(!content || content.length === 0)
|
||
) {
|
||
return {
|
||
isThinking: false,
|
||
content: "",
|
||
};
|
||
}
|
||
|
||
if (reasoning && reasoning.length > 0) {
|
||
return {
|
||
isThinking: true,
|
||
content: reasoning,
|
||
};
|
||
} else if (content && content.length > 0) {
|
||
return {
|
||
isThinking: false,
|
||
content: content,
|
||
};
|
||
}
|
||
|
||
return {
|
||
isThinking: false,
|
||
content: "",
|
||
};
|
||
},
|
||
// processToolMessage, include tool_calls message and tool call results
|
||
(
|
||
requestPayload: RequestPayload,
|
||
toolCallMessage: any,
|
||
toolCallResult: any[],
|
||
) => {
|
||
// @ts-ignore
|
||
requestPayload?.messages?.splice(
|
||
// @ts-ignore
|
||
requestPayload?.messages?.length,
|
||
0,
|
||
toolCallMessage,
|
||
...toolCallResult,
|
||
);
|
||
},
|
||
options,
|
||
);
|
||
} else {
|
||
const res = await fetch(chatPath, chatPayload);
|
||
clearTimeout(requestTimeoutId);
|
||
|
||
const resJson = await res.json();
|
||
const message = this.extractMessage(resJson);
|
||
options.onFinish(message, res);
|
||
}
|
||
} catch (e) {
|
||
console.log("[Request] failed to make a chat request", e);
|
||
options.onError?.(e as Error);
|
||
}
|
||
}
|
||
async usage() {
|
||
return {
|
||
used: 0,
|
||
total: 0,
|
||
};
|
||
}
|
||
|
||
async models(): Promise<LLMModel[]> {
|
||
return [];
|
||
}
|
||
}
|