ChatGPT-Next-Web/app/client/platforms/bedrock.ts
glay 5d5456c1c5 修改: app/api/bedrock.ts
修改:     app/client/platforms/bedrock.ts
2024-11-06 17:23:53 +08:00

296 lines
8.3 KiB
TypeScript

import { ApiPath } from "../../constant";
import { ChatOptions, getHeaders, LLMApi, SpeechOptions } from "../api";
import {
useAppConfig,
usePluginStore,
useChatStore,
ChatMessageTool,
} from "../../store";
import { getMessageTextContent, isVisionModel } from "../../utils";
import { fetch } from "../../utils/stream";
import { preProcessImageContent, stream } from "../../utils/chat";
import { RequestPayload } from "./openai";
export type MultiBlockContent = {
type: "image" | "text";
source?: {
type: string;
media_type: string;
data: string;
};
text?: string;
};
export type AnthropicMessage = {
role: (typeof ClaudeMapper)[keyof typeof ClaudeMapper];
content: string | MultiBlockContent[];
};
const ClaudeMapper = {
assistant: "assistant",
user: "user",
system: "user",
} as const;
export class BedrockApi implements LLMApi {
speech(options: SpeechOptions): Promise<ArrayBuffer> {
throw new Error("Speech not implemented for Bedrock.");
}
extractMessage(res: any) {
console.log("[Response] Bedrock not stream response: ", res);
if (res.error) {
return "```\n" + JSON.stringify(res, null, 4) + "\n```";
}
return res?.content ?? res;
}
async chat(options: ChatOptions): Promise<void> {
const visionModel = isVisionModel(options.config.model);
const shouldStream = !!options.config.stream;
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
...{
model: options.config.model,
},
};
// try get base64image from local cache image_url
const messages: ChatOptions["messages"] = [];
for (const v of options.messages) {
const content = await preProcessImageContent(v.content);
messages.push({ role: v.role, content });
}
const keys = ["system", "user"];
// roles must alternate between "user" and "assistant" in claude, so add a fake assistant message between two user messages
for (let i = 0; i < messages.length - 1; i++) {
const message = messages[i];
const nextMessage = messages[i + 1];
if (keys.includes(message.role) && keys.includes(nextMessage.role)) {
messages[i] = [
message,
{
role: "assistant",
content: ";",
},
] as any;
}
}
const prompt = messages
.flat()
.filter((v) => {
if (!v.content) return false;
if (typeof v.content === "string" && !v.content.trim()) return false;
return true;
})
.map((v) => {
const { role, content } = v;
const insideRole = ClaudeMapper[role] ?? "user";
if (!visionModel || typeof content === "string") {
return {
role: insideRole,
content: getMessageTextContent(v),
};
}
return {
role: insideRole,
content: content
.filter((v) => v.image_url || v.text)
.map(({ type, text, image_url }) => {
if (type === "text") {
return {
type,
text: text!,
};
}
const { url = "" } = image_url || {};
const colonIndex = url.indexOf(":");
const semicolonIndex = url.indexOf(";");
const comma = url.indexOf(",");
const mimeType = url.slice(colonIndex + 1, semicolonIndex);
const encodeType = url.slice(semicolonIndex + 1, comma);
const data = url.slice(comma + 1);
return {
type: "image" as const,
source: {
type: encodeType,
media_type: mimeType,
data,
},
};
}),
};
});
if (prompt[0]?.role === "assistant") {
prompt.unshift({
role: "user",
content: ";",
});
}
const requestBody = {
modelId: options.config.model,
messages: prompt,
inferenceConfig: {
maxTokens: modelConfig.max_tokens,
temperature: modelConfig.temperature,
topP: modelConfig.top_p,
stopSequences: [],
},
stream: shouldStream,
};
const conversePath = `${ApiPath.Bedrock}/converse`;
const controller = new AbortController();
options.onController?.(controller);
if (shouldStream) {
let currentToolUse: ChatMessageTool | null = null;
let index = -1;
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
return stream(
conversePath,
requestBody,
getHeaders(),
// @ts-ignore
tools.map((tool) => ({
name: tool?.function?.name,
description: tool?.function?.description,
input_schema: tool?.function?.parameters,
})),
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
let chunkJson:
| undefined
| {
type: "content_block_delta" | "content_block_stop";
content_block?: {
type: "tool_use";
id: string;
name: string;
};
delta?: {
type: "text_delta" | "input_json_delta";
text?: string;
partial_json?: string;
};
index: number;
};
chunkJson = JSON.parse(text);
if (chunkJson?.content_block?.type == "tool_use") {
index += 1;
const id = chunkJson?.content_block.id;
const name = chunkJson?.content_block.name;
runTools.push({
id,
type: "function",
function: {
name,
arguments: "",
},
});
}
if (
chunkJson?.delta?.type == "input_json_delta" &&
chunkJson?.delta?.partial_json
) {
// @ts-ignore
runTools[index]["function"]["arguments"] +=
chunkJson?.delta?.partial_json;
}
return chunkJson?.delta?.text;
},
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayload,
toolCallMessage: any,
toolCallResult: any[],
) => {
// reset index value
index = -1;
// @ts-ignore
requestPayload?.messages?.splice(
// @ts-ignore
requestPayload?.messages?.length,
0,
{
role: "assistant",
content: toolCallMessage.tool_calls.map(
(tool: ChatMessageTool) => ({
type: "tool_use",
id: tool.id,
name: tool?.function?.name,
input: tool?.function?.arguments
? JSON.parse(tool?.function?.arguments)
: {},
}),
),
},
// @ts-ignore
...toolCallResult.map((result) => ({
role: "user",
content: [
{
type: "tool_result",
tool_use_id: result.tool_call_id,
content: result.content,
},
],
})),
);
},
options,
);
} else {
const payload = {
method: "POST",
body: JSON.stringify(requestBody),
signal: controller.signal,
headers: {
...getHeaders(), // get common headers
},
};
try {
controller.signal.onabort = () =>
options.onFinish("", new Response(null, { status: 400 }));
const res = await fetch(conversePath, payload);
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message, res);
} catch (e) {
console.error("failed to chat", e);
options.onError?.(e as Error);
}
}
}
async usage() {
return {
used: 0,
total: 0,
};
}
async models() {
return [];
}
}