# Import necessary libraries import numpy as np import tensorflow as tf from sklearn.linear_model import LinearRegression from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from transformers import GPT2LMHeadModel, GPT2Tokenizer # Example 1: Reactive Machine (Simple Rule-Based System) def reactive_machine(input_value): if input_value > 0: return "Positive" else: return "Negative" # Example 2: Limited Memory (Simple Machine Learning Model) def limited_memory_model(): # Generate a simple dataset X, y = make_classification(n_samples=1000, n_features=20, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train a simple linear regression model model = LinearRegression() model.fit(X_train, y_train) # Make predictions predictions = model.predict(X_test) predictions = [1 if p > 0.5 else 0 for p in predictions] # Evaluate the model accuracy = accuracy_score(y_test, predictions) return accuracy # Example 3: Theory of Mind (Simple Neural Network) def theory_of_mind_model(): # Create a simple neural network model = tf.keras.Sequential([ tf.keras.layers.Dense(128, activation='relu', input_shape=(20,)), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) # Compile the model model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # Generate a simple dataset X, y = make_classification(n_samples=1000, n_features=20, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train the model model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2) # Evaluate the model loss, accuracy = model.evaluate(X_test, y_test) return accuracy # Example 4: General AI (Advanced Language Model) def general_ai_model(prompt): # Load pre-trained GPT-2 model and tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = GPT2LMHeadModel.from_pretrained("gpt2") # Encode the input prompt inputs = tokenizer.encode(prompt, return_tensors="pt") # Generate a response outputs = model.generate(inputs, max_length=100, num_return_sequences=1) # Decode the response response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Example 5: Self-Aware AI (Theoretical Concept) def self_aware_ai(): return "Self-aware AI is a theoretical concept and not yet achievable with current technology." # Main function to run examples if __name__ == "__main__": print("Reactive Machine Output:", reactive_machine(5)) print("Limited Memory Model Accuracy:", limited_memory_model()) print("Theory of Mind Model Accuracy:", theory_of_mind_model()) print("General AI Model Response:", general_ai_model("this is the future of AI?")) print("Self-Aware AI:", self_aware_ai())