Merge branch 'main' into main

This commit is contained in:
Sheng Fan 2024-04-08 16:51:00 +08:00 committed by GitHub
commit aa1035d889
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
28 changed files with 1758 additions and 177 deletions

View File

@ -50,4 +50,22 @@ DISABLE_FAST_LINK=
# (optional)
# Default: 1
# If your project is not deployed on Vercel, set this value to 1.
NEXT_PUBLIC_ENABLE_NODEJS_PLUGIN=1
NEXT_PUBLIC_ENABLE_NODEJS_PLUGIN=1
# (optional)
# Default: Empty
# If you want to enable RAG, set this value to 1.
ENABLE_RAG=
# (optional)
# Default: Empty
# Model used when RAG vectorized data.
RAG_EMBEDDING_MODEL=text-embedding-ada-002
# Configuration is required when turning on RAG.
# Default: Empty
QDRANT_URL=
# Configuration is required when turning on RAG.
# Default: Empty
QDRANT_API_KEY=

View File

@ -25,7 +25,7 @@
> [!WARNING]
> 本项目插件功能基于 [OpenAI API 函数调用](https://platform.openai.com/docs/guides/function-calling) 功能实现,转发 GitHub Copilot 接口或类似实现的模拟接口并不能正常调用插件功能!
![cover](./docs/images/gpt-vision-example.jpg)
![cover](./docs/images/rag-example.jpg)
![plugin-example](./docs/images/plugin-example.png)
@ -35,6 +35,9 @@
## 主要功能
- RAG 功能 (预览)
- 配置请参考文档[RAG 功能配置说明](./docs/rag-cn.md)
- 除插件工具外,与原项目保持一致 [ChatGPT-Next-Web 主要功能](https://github.com/Yidadaa/ChatGPT-Next-Web#主要功能)
- 支持 OpenAI TTS文本转语音https://github.com/Hk-Gosuto/ChatGPT-Next-Web-LangChain/issues/208
@ -142,7 +145,7 @@
- [x] 支持语音输入 https://github.com/Hk-Gosuto/ChatGPT-Next-Web-LangChain/issues/208
- [ ] 支持其他类型文件上传 https://github.com/Hk-Gosuto/ChatGPT-Next-Web-LangChain/issues/77
- [x] 支持其他类型文件上传 https://github.com/Hk-Gosuto/ChatGPT-Next-Web-LangChain/issues/77
- [ ] 支持 Azure Storage https://github.com/Hk-Gosuto/ChatGPT-Next-Web-LangChain/issues/217
@ -295,11 +298,9 @@ docker run -d -p 3000:3000 \
| [简体中文](./docs/synchronise-chat-logs-cn.md) | [English](./docs/synchronise-chat-logs-en.md) | [Italiano](./docs/synchronise-chat-logs-es.md) | [日本語](./docs/synchronise-chat-logs-ja.md) | [한국어](./docs/synchronise-chat-logs-ko.md)
## 贡献者
## Star History
<a href="https://github.com/Hk-Gosuto/ChatGPT-Next-Web-LangChain/graphs/contributors">
<img src="https://contrib.rocks/image?repo=Hk-Gosuto/ChatGPT-Next-Web-LangChain" />
</a>
[![Star History Chart](https://api.star-history.com/svg?repos=Hk-Gosuto/ChatGPT-Next-Web-LangChain&type=Date)](https://star-history.com/#Hk-Gosuto/ChatGPT-Next-Web-LangChain&Date)
## 捐赠

View File

@ -13,6 +13,7 @@ const DANGER_CONFIG = {
hideBalanceQuery: serverConfig.hideBalanceQuery,
disableFastLink: serverConfig.disableFastLink,
customModels: serverConfig.customModels,
isEnableRAG: serverConfig.isEnableRAG,
};
declare global {

View File

@ -2,6 +2,7 @@ import { getServerSideConfig } from "@/app/config/server";
import LocalFileStorage from "@/app/utils/local_file_storage";
import S3FileStorage from "@/app/utils/s3_file_storage";
import { NextRequest, NextResponse } from "next/server";
import mime from "mime";
async function handle(
req: NextRequest,
@ -13,19 +14,27 @@ async function handle(
try {
const serverConfig = getServerSideConfig();
const fileName = params.path[0];
const contentType = mime.getType(fileName);
if (serverConfig.isStoreFileToLocal) {
var fileBuffer = await LocalFileStorage.get(params.path[0]);
var fileBuffer = await LocalFileStorage.get(fileName);
return new Response(fileBuffer, {
headers: {
"Content-Type": "image/png",
"Content-Type": contentType ?? "application/octet-stream",
},
});
} else {
var file = await S3FileStorage.get(params.path[0]);
return new Response(file?.transformToWebStream(), {
headers: {
"Content-Type": "image/png",
},
var file = await S3FileStorage.get(fileName);
if (file) {
return new Response(file?.transformToWebStream(), {
headers: {
"Content-Type": contentType ?? "application/octet-stream",
},
});
}
return new Response("not found", {
status: 404,
});
}
} catch (e) {

View File

@ -4,6 +4,7 @@ import { auth } from "@/app/api/auth";
import LocalFileStorage from "@/app/utils/local_file_storage";
import { getServerSideConfig } from "@/app/config/server";
import S3FileStorage from "@/app/utils/s3_file_storage";
import path from "path";
async function handle(req: NextRequest) {
if (req.method === "OPTIONS") {
@ -19,20 +20,14 @@ async function handle(req: NextRequest) {
try {
const formData = await req.formData();
const image = formData.get("file") as File;
const file = formData.get("file") as File;
const fileData = await file.arrayBuffer();
const originalFileName = file?.name;
const imageReader = image.stream().getReader();
const imageData: number[] = [];
while (true) {
const { done, value } = await imageReader.read();
if (done) break;
imageData.push(...value);
}
const buffer = Buffer.from(imageData);
var fileName = `${Date.now()}.png`;
if (!fileData) throw new Error("Get file buffer error");
const buffer = Buffer.from(fileData);
const fileType = path.extname(originalFileName).slice(1);
var fileName = `${Date.now()}.${fileType}`;
var filePath = "";
const serverConfig = getServerSideConfig();
if (serverConfig.isStoreFileToLocal) {

View File

@ -10,16 +10,15 @@ import { WolframAlphaTool } from "@/app/api/langchain-tools/wolframalpha";
import { BilibiliVideoInfoTool } from "./bilibili_vid_info";
import { BilibiliVideoSearchTool } from "./bilibili_vid_search";
import { BilibiliMusicRecognitionTool } from "./bilibili_music_recognition";
import { RAGSearch } from "./rag_search";
export class NodeJSTool {
private apiKey: string | undefined;
private baseUrl: string;
private model: BaseLanguageModel;
private embeddings: Embeddings;
private sessionId: string;
private ragEmbeddings: Embeddings;
private callback?: (data: string) => Promise<void>;
constructor(
@ -27,12 +26,16 @@ export class NodeJSTool {
baseUrl: string,
model: BaseLanguageModel,
embeddings: Embeddings,
sessionId: string,
ragEmbeddings: Embeddings,
callback?: (data: string) => Promise<void>,
) {
this.apiKey = apiKey;
this.baseUrl = baseUrl;
this.model = model;
this.embeddings = embeddings;
this.sessionId = sessionId;
this.ragEmbeddings = ragEmbeddings;
this.callback = callback;
}
@ -66,6 +69,9 @@ export class NodeJSTool {
bilibiliVideoSearchTool,
bilibiliMusicRecognitionTool,
];
if (!!process.env.ENABLE_RAG) {
tools.push(new RAGSearch(this.sessionId, this.model, this.ragEmbeddings));
}
return tools;
}
}

View File

@ -0,0 +1,79 @@
import { Tool } from "@langchain/core/tools";
import { CallbackManagerForToolRun } from "@langchain/core/callbacks/manager";
import { BaseLanguageModel } from "langchain/dist/base_language";
import { formatDocumentsAsString } from "langchain/util/document";
import { Embeddings } from "langchain/dist/embeddings/base.js";
import { RunnableSequence } from "@langchain/core/runnables";
import { StringOutputParser } from "@langchain/core/output_parsers";
import { Pinecone } from "@pinecone-database/pinecone";
import { PineconeStore } from "@langchain/pinecone";
import { getServerSideConfig } from "@/app/config/server";
import { QdrantVectorStore } from "@langchain/community/vectorstores/qdrant";
export class RAGSearch extends Tool {
static lc_name() {
return "RAGSearch";
}
get lc_namespace() {
return [...super.lc_namespace, "ragsearch"];
}
private sessionId: string;
private model: BaseLanguageModel;
private embeddings: Embeddings;
constructor(
sessionId: string,
model: BaseLanguageModel,
embeddings: Embeddings,
) {
super();
this.sessionId = sessionId;
this.model = model;
this.embeddings = embeddings;
}
/** @ignore */
async _call(inputs: string, runManager?: CallbackManagerForToolRun) {
const serverConfig = getServerSideConfig();
if (!serverConfig.isEnableRAG)
throw new Error("env ENABLE_RAG not configured");
// const pinecone = new Pinecone();
// const pineconeIndex = pinecone.Index(serverConfig.pineconeIndex!);
// const vectorStore = await PineconeStore.fromExistingIndex(this.embeddings, {
// pineconeIndex,
// });
const vectorStore = await QdrantVectorStore.fromExistingCollection(
this.embeddings,
{
url: process.env.QDRANT_URL,
apiKey: process.env.QDRANT_API_KEY,
collectionName: this.sessionId,
},
);
let context;
const returnCunt = serverConfig.ragReturnCount
? parseInt(serverConfig.ragReturnCount, 10)
: 4;
console.log("[rag-search]", { inputs, returnCunt });
// const results = await vectorStore.similaritySearch(inputs, returnCunt, {
// sessionId: this.sessionId,
// });
const results = await vectorStore.similaritySearch(inputs, returnCunt);
context = formatDocumentsAsString(results);
console.log("[rag-search]", { context });
return context;
// const input = `Text:${context}\n\nQuestion:${inputs}\n\nI need you to answer the question based on the text.`;
// console.log("[rag-search]", input);
// const chain = RunnableSequence.from([this.model, new StringOutputParser()]);
// return chain.invoke(input, runManager?.getChild());
}
name = "rag-search";
description = `It is used to query documents entered by the user.The input content is the keywords extracted from the user's question, and multiple keywords are separated by spaces and passed in.`;
}

View File

@ -0,0 +1,120 @@
import { NextRequest, NextResponse } from "next/server";
import { auth } from "@/app/api/auth";
import { ACCESS_CODE_PREFIX, ModelProvider } from "@/app/constant";
import { OpenAIEmbeddings } from "@langchain/openai";
import { Pinecone } from "@pinecone-database/pinecone";
import { PineconeStore } from "@langchain/pinecone";
import { QdrantVectorStore } from "@langchain/community/vectorstores/qdrant";
import { getServerSideConfig } from "@/app/config/server";
interface RequestBody {
sessionId: string;
query: string;
baseUrl?: string;
}
async function handle(req: NextRequest) {
if (req.method === "OPTIONS") {
return NextResponse.json({ body: "OK" }, { status: 200 });
}
try {
const authResult = auth(req, ModelProvider.GPT);
if (authResult.error) {
return NextResponse.json(authResult, {
status: 401,
});
}
const reqBody: RequestBody = await req.json();
const authToken = req.headers.get("Authorization") ?? "";
const token = authToken.trim().replaceAll("Bearer ", "").trim();
const serverConfig = getServerSideConfig();
// const pinecone = new Pinecone();
// const pineconeIndex = pinecone.Index(serverConfig.pineconeIndex!);
const apiKey = getOpenAIApiKey(token);
const baseUrl = getOpenAIBaseUrl(reqBody.baseUrl);
const embeddings = new OpenAIEmbeddings(
{
modelName: serverConfig.ragEmbeddingModel ?? "text-embedding-3-large",
openAIApiKey: apiKey,
},
{ basePath: baseUrl },
);
// const vectorStore = await PineconeStore.fromExistingIndex(embeddings, {
// pineconeIndex,
// });
// const results = await vectorStore.similaritySearch(reqBody.query, 4, {
// sessionId: reqBody.sessionId,
// });
const vectorStore = await QdrantVectorStore.fromExistingCollection(
embeddings,
{
url: process.env.QDRANT_URL,
apiKey: process.env.QDRANT_API_KEY,
collectionName: reqBody.sessionId,
},
);
const returnCunt = serverConfig.ragReturnCount
? parseInt(serverConfig.ragReturnCount, 10)
: 4;
const response = await vectorStore.similaritySearch(
reqBody.query,
returnCunt,
);
return NextResponse.json(response, {
status: 200,
});
} catch (e) {
console.error(e);
return new Response(JSON.stringify({ error: (e as any).message }), {
status: 500,
headers: { "Content-Type": "application/json" },
});
}
}
function getOpenAIApiKey(token: string) {
const serverConfig = getServerSideConfig();
const isApiKey = !token.startsWith(ACCESS_CODE_PREFIX);
let apiKey = serverConfig.apiKey;
if (isApiKey && token) {
apiKey = token;
}
return apiKey;
}
function getOpenAIBaseUrl(reqBaseUrl: string | undefined) {
const serverConfig = getServerSideConfig();
let baseUrl = "https://api.openai.com/v1";
if (serverConfig.baseUrl) baseUrl = serverConfig.baseUrl;
if (reqBaseUrl?.startsWith("http://") || reqBaseUrl?.startsWith("https://"))
baseUrl = reqBaseUrl;
if (!baseUrl.endsWith("/v1"))
baseUrl = baseUrl.endsWith("/") ? `${baseUrl}v1` : `${baseUrl}/v1`;
console.log("[baseUrl]", baseUrl);
return baseUrl;
}
export const POST = handle;
export const runtime = "nodejs";
export const preferredRegion = [
"arn1",
"bom1",
"cdg1",
"cle1",
"cpt1",
"dub1",
"fra1",
"gru1",
"hnd1",
"iad1",
"icn1",
"kix1",
"lhr1",
"pdx1",
"sfo1",
"sin1",
"syd1",
];

View File

@ -0,0 +1,221 @@
import { NextRequest, NextResponse } from "next/server";
import { auth } from "@/app/api/auth";
import { ACCESS_CODE_PREFIX, ModelProvider } from "@/app/constant";
import { OpenAI, OpenAIEmbeddings } from "@langchain/openai";
import { PDFLoader } from "langchain/document_loaders/fs/pdf";
import { TextLoader } from "langchain/document_loaders/fs/text";
import { CSVLoader } from "langchain/document_loaders/fs/csv";
import { DocxLoader } from "langchain/document_loaders/fs/docx";
import { EPubLoader } from "langchain/document_loaders/fs/epub";
import { JSONLoader } from "langchain/document_loaders/fs/json";
import { JSONLinesLoader } from "langchain/document_loaders/fs/json";
import { OpenAIWhisperAudio } from "langchain/document_loaders/fs/openai_whisper_audio";
// import { PPTXLoader } from "langchain/document_loaders/fs/pptx";
import { SRTLoader } from "langchain/document_loaders/fs/srt";
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";
import { Pinecone } from "@pinecone-database/pinecone";
import { PineconeStore } from "@langchain/pinecone";
import { getServerSideConfig } from "@/app/config/server";
import { FileInfo } from "@/app/client/platforms/utils";
import mime from "mime";
import LocalFileStorage from "@/app/utils/local_file_storage";
import S3FileStorage from "@/app/utils/s3_file_storage";
import { QdrantVectorStore } from "@langchain/community/vectorstores/qdrant";
interface RequestBody {
sessionId: string;
fileInfos: FileInfo[];
baseUrl?: string;
}
function getLoader(
fileName: string,
fileBlob: Blob,
openaiApiKey: string,
openaiBaseUrl: string,
) {
const extension = fileName.split(".").pop();
switch (extension) {
case "txt":
case "md":
return new TextLoader(fileBlob);
case "pdf":
return new PDFLoader(fileBlob);
case "docx":
return new DocxLoader(fileBlob);
case "csv":
return new CSVLoader(fileBlob);
case "json":
return new JSONLoader(fileBlob);
// case 'pptx':
// return new PPTXLoader(fileBlob);
case "srt":
return new SRTLoader(fileBlob);
case "mp3":
return new OpenAIWhisperAudio(fileBlob, {
clientOptions: {
apiKey: openaiApiKey,
baseURL: openaiBaseUrl,
},
});
default:
throw new Error(`Unsupported file type: ${extension}`);
}
}
async function handle(req: NextRequest) {
if (req.method === "OPTIONS") {
return NextResponse.json({ body: "OK" }, { status: 200 });
}
try {
const authResult = auth(req, ModelProvider.GPT);
if (authResult.error) {
return NextResponse.json(authResult, {
status: 401,
});
}
const reqBody: RequestBody = await req.json();
const authToken = req.headers.get("Authorization") ?? "";
const token = authToken.trim().replaceAll("Bearer ", "").trim();
const apiKey = getOpenAIApiKey(token);
const baseUrl = getOpenAIBaseUrl(reqBody.baseUrl);
const serverConfig = getServerSideConfig();
// const pinecone = new Pinecone();
// const pineconeIndex = pinecone.Index(serverConfig.pineconeIndex!);
const embeddings = new OpenAIEmbeddings(
{
modelName: serverConfig.ragEmbeddingModel,
openAIApiKey: apiKey,
},
{ basePath: baseUrl },
);
// https://js.langchain.com/docs/integrations/vectorstores/pinecone
// https://js.langchain.com/docs/integrations/vectorstores/qdrant
// process files
for (let i = 0; i < reqBody.fileInfos.length; i++) {
const fileInfo = reqBody.fileInfos[i];
const contentType = mime.getType(fileInfo.fileName);
// get file buffer
var fileBuffer: Buffer | undefined;
if (serverConfig.isStoreFileToLocal) {
fileBuffer = await LocalFileStorage.get(fileInfo.fileName);
} else {
var file = await S3FileStorage.get(fileInfo.fileName);
var fileByteArray = await file?.transformToByteArray();
if (fileByteArray) fileBuffer = Buffer.from(fileByteArray);
}
if (!fileBuffer || !contentType) {
console.error(`get ${fileInfo.fileName} buffer fail`);
continue;
}
// load file to docs
const fileBlob = bufferToBlob(fileBuffer, contentType);
const loader = getLoader(fileInfo.fileName, fileBlob, apiKey, baseUrl);
const docs = await loader.load();
// modify doc meta
docs.forEach((doc) => {
doc.metadata = {
...doc.metadata,
sessionId: reqBody.sessionId,
sourceFileName: fileInfo.originalFilename,
fileName: fileInfo.fileName,
};
});
// split
const chunkSize = serverConfig.ragChunkSize
? parseInt(serverConfig.ragChunkSize, 10)
: 2000;
const chunkOverlap = serverConfig.ragChunkOverlap
? parseInt(serverConfig.ragChunkOverlap, 10)
: 200;
const textSplitter = new RecursiveCharacterTextSplitter({
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
});
const splits = await textSplitter.splitDocuments(docs);
const vectorStore = await QdrantVectorStore.fromDocuments(
splits,
embeddings,
{
url: process.env.QDRANT_URL,
apiKey: process.env.QDRANT_API_KEY,
collectionName: reqBody.sessionId,
},
);
// await PineconeStore.fromDocuments(splits, embeddings, {
// pineconeIndex,
// maxConcurrency: 5,
// });
// const vectorStore = await PineconeStore.fromExistingIndex(embeddings, {
// pineconeIndex,
// });
}
return NextResponse.json(
{
sessionId: reqBody.sessionId,
},
{
status: 200,
},
);
} catch (e) {
console.error(e);
return new Response(JSON.stringify({ error: (e as any).message }), {
status: 500,
headers: { "Content-Type": "application/json" },
});
}
}
function bufferToBlob(buffer: Buffer, mimeType?: string): Blob {
const arrayBuffer: ArrayBuffer = buffer.buffer.slice(
buffer.byteOffset,
buffer.byteOffset + buffer.byteLength,
);
return new Blob([arrayBuffer], { type: mimeType || "" });
}
function getOpenAIApiKey(token: string) {
const serverConfig = getServerSideConfig();
const isApiKey = !token.startsWith(ACCESS_CODE_PREFIX);
let apiKey = serverConfig.apiKey;
if (isApiKey && token) {
apiKey = token;
}
return apiKey;
}
function getOpenAIBaseUrl(reqBaseUrl: string | undefined) {
const serverConfig = getServerSideConfig();
let baseUrl = "https://api.openai.com/v1";
if (serverConfig.baseUrl) baseUrl = serverConfig.baseUrl;
if (reqBaseUrl?.startsWith("http://") || reqBaseUrl?.startsWith("https://"))
baseUrl = reqBaseUrl;
if (!baseUrl.endsWith("/v1"))
baseUrl = baseUrl.endsWith("/") ? `${baseUrl}v1` : `${baseUrl}/v1`;
console.log("[baseUrl]", baseUrl);
return baseUrl;
}
export const POST = handle;
export const runtime = "nodejs";
export const preferredRegion = [
"arn1",
"bom1",
"cdg1",
"cle1",
"cpt1",
"dub1",
"fra1",
"gru1",
"hnd1",
"iad1",
"icn1",
"kix1",
"lhr1",
"pdx1",
"sfo1",
"sin1",
"syd1",
];

View File

@ -44,6 +44,7 @@ export interface RequestMessage {
}
export interface RequestBody {
chatSessionId: string;
messages: RequestMessage[];
isAzure: boolean;
azureApiVersion?: string;

View File

@ -44,6 +44,13 @@ async function handle(req: NextRequest) {
},
{ basePath: baseUrl },
);
const ragEmbeddings = new OpenAIEmbeddings(
{
modelName: process.env.RAG_EMBEDDING_MODEL ?? "text-embedding-3-large",
openAIApiKey: apiKey,
},
{ basePath: baseUrl },
);
var dalleCallback = async (data: string) => {
var response = new ResponseBody();
@ -62,6 +69,8 @@ async function handle(req: NextRequest) {
baseUrl,
model,
embeddings,
reqBody.chatSessionId,
ragEmbeddings,
dalleCallback,
);
var nodejsTools = await nodejsTool.getCustomTools();

View File

@ -7,7 +7,7 @@ import {
} from "../constant";
import { ChatMessage, ModelType, useAccessStore, useChatStore } from "../store";
import { ChatGPTApi } from "./platforms/openai";
import { FileApi } from "./platforms/utils";
import { FileApi, FileInfo } from "./platforms/utils";
import { GeminiProApi } from "./platforms/google";
export const ROLES = ["system", "user", "assistant"] as const;
export type MessageRole = (typeof ROLES)[number];
@ -27,6 +27,7 @@ export interface MultimodalContent {
export interface RequestMessage {
role: MessageRole;
content: string | MultimodalContent[];
fileInfos?: FileInfo[];
}
export interface LLMConfig {
@ -74,6 +75,7 @@ export interface ChatOptions {
}
export interface AgentChatOptions {
chatSessionId?: string;
messages: RequestMessage[];
config: LLMConfig;
agentConfig: LLMAgentConfig;
@ -84,6 +86,13 @@ export interface AgentChatOptions {
onController?: (controller: AbortController) => void;
}
export interface CreateRAGStoreOptions {
chatSessionId: string;
fileInfos: FileInfo[];
onError?: (err: Error) => void;
onController?: (controller: AbortController) => void;
}
export interface LLMUsage {
used: number;
total: number;
@ -106,6 +115,7 @@ export abstract class LLMApi {
abstract speech(options: SpeechOptions): Promise<ArrayBuffer>;
abstract transcription(options: TranscriptionOptions): Promise<string>;
abstract toolAgentChat(options: AgentChatOptions): Promise<void>;
abstract createRAGStore(options: CreateRAGStoreOptions): Promise<void>;
abstract usage(): Promise<LLMUsage>;
abstract models(): Promise<LLMModel[]>;
}
@ -213,8 +223,8 @@ export function getHeaders(ignoreHeaders?: boolean) {
const apiKey = isGoogle
? accessStore.googleApiKey
: isAzure
? accessStore.azureApiKey
: accessStore.openaiApiKey;
? accessStore.azureApiKey
: accessStore.openaiApiKey;
const makeBearer = (s: string) =>
`${isGoogle || isAzure ? "" : "Bearer "}${s.trim()}`;

View File

@ -2,6 +2,7 @@ import { Google, REQUEST_TIMEOUT_MS } from "@/app/constant";
import {
AgentChatOptions,
ChatOptions,
CreateRAGStoreOptions,
getHeaders,
LLMApi,
LLMModel,
@ -19,6 +20,9 @@ import {
} from "@/app/utils";
export class GeminiProApi implements LLMApi {
createRAGStore(options: CreateRAGStoreOptions): Promise<void> {
throw new Error("Method not implemented.");
}
transcription(options: TranscriptionOptions): Promise<string> {
throw new Error("Method not implemented.");
}

View File

@ -12,6 +12,7 @@ import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
import {
AgentChatOptions,
ChatOptions,
CreateRAGStoreOptions,
getHeaders,
LLMApi,
LLMModel,
@ -362,6 +363,34 @@ export class ChatGPTApi implements LLMApi {
}
}
async createRAGStore(options: CreateRAGStoreOptions): Promise<void> {
try {
const accessStore = useAccessStore.getState();
const isAzure = accessStore.provider === ServiceProvider.Azure;
let baseUrl = isAzure ? accessStore.azureUrl : accessStore.openaiUrl;
const requestPayload = {
sessionId: options.chatSessionId,
fileInfos: options.fileInfos,
baseUrl: baseUrl,
};
console.log("[Request] rag store payload: ", requestPayload);
const controller = new AbortController();
options.onController?.(controller);
let path = "/api/langchain/rag/store";
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
const res = await fetch(path, chatPayload);
if (res.status !== 200) throw new Error(await res.text());
} catch (e) {
console.log("[Request] failed to make a chat reqeust", e);
options.onError?.(e as Error);
}
}
async toolAgentChat(options: AgentChatOptions) {
const messages = options.messages.map((v) => ({
role: v.role,
@ -379,6 +408,7 @@ export class ChatGPTApi implements LLMApi {
const isAzure = accessStore.provider === ServiceProvider.Azure;
let baseUrl = isAzure ? accessStore.azureUrl : accessStore.openaiUrl;
const requestPayload = {
chatSessionId: options.chatSessionId,
messages,
isAzure,
azureApiVersion: accessStore.azureApiVersion,

View File

@ -1,7 +1,16 @@
import { getHeaders } from "../api";
export interface FileInfo {
originalFilename: string;
fileName: string;
filePath: string;
size: number;
}
export class FileApi {
async upload(file: any): Promise<any> {
async upload(file: any): Promise<FileInfo> {
const fileName = file.name;
const fileSize = file.size;
const formData = new FormData();
formData.append("file", file);
var headers = getHeaders(true);
@ -16,6 +25,8 @@ export class FileApi {
const resJson = await res.json();
console.log(resJson);
return {
originalFilename: fileName,
size: fileSize,
fileName: resJson.fileName,
filePath: resJson.filePath,
};

View File

@ -1,5 +1,69 @@
@import "../styles/animation.scss";
.attach-files {
position: absolute;
left: 30px;
bottom: 32px;
display: flex;
}
.attach-file {
cursor: default;
width: 64px;
height: 64px;
border: rgba($color: #888, $alpha: 0.2) 1px solid;
border-radius: 5px;
margin-right: 10px;
background-size: cover;
background-position: center;
background-color: var(--second);
display: flex;
position: relative;
justify-content: center;
align-items: center;
.attach-file-info {
top: 5px;
width: 100%;
position: absolute;
font-size: 12px;
font-weight: bolder;
text-align: center;
word-wrap: break-word;
word-break: break-all;
-webkit-line-clamp: 3;
-webkit-box-orient: vertical;
line-height: 1.5;
overflow: hidden;
text-overflow: ellipsis;
display: -webkit-box;
}
.attach-file-mask {
width: 100%;
height: 100%;
opacity: 0;
transition: all ease 0.2s;
z-index: 999;
}
.attach-file-mask:hover {
opacity: 1;
}
.delete-file {
width: 24px;
height: 24px;
cursor: pointer;
display: flex;
align-items: center;
justify-content: center;
border-radius: 5px;
float: right;
background-color: var(--white);
}
}
.attach-images {
position: absolute;
left: 30px;
@ -232,10 +296,12 @@
animation: slide-in ease 0.3s;
$linear: linear-gradient(to right,
rgba(0, 0, 0, 0),
rgba(0, 0, 0, 1),
rgba(0, 0, 0, 0));
$linear: linear-gradient(
to right,
rgba(0, 0, 0, 0),
rgba(0, 0, 0, 1),
rgba(0, 0, 0, 0)
);
mask-image: $linear;
@mixin show {
@ -368,7 +434,7 @@
}
}
.chat-message-user>.chat-message-container {
.chat-message-user > .chat-message-container {
align-items: flex-end;
}
@ -454,6 +520,17 @@
transition: all ease 0.3s;
}
.chat-message-item-files {
display: grid;
grid-template-columns: repeat(var(--file-count), auto);
grid-gap: 5px;
}
.chat-message-item-file {
text-decoration: none;
color: #aaa;
}
.chat-message-item-image {
width: 100%;
margin-top: 10px;
@ -482,23 +559,27 @@
border: rgba($color: #888, $alpha: 0.2) 1px solid;
}
@media only screen and (max-width: 600px) {
$calc-image-width: calc(100vw/3*2/var(--image-count));
$calc-image-width: calc(100vw / 3 * 2 / var(--image-count));
.chat-message-item-image-multi {
width: $calc-image-width;
height: $calc-image-width;
}
.chat-message-item-image {
max-width: calc(100vw/3*2);
max-width: calc(100vw / 3 * 2);
}
}
@media screen and (min-width: 600px) {
$max-image-width: calc(calc(1200px - var(--sidebar-width))/3*2/var(--image-count));
$image-width: calc(calc(var(--window-width) - var(--sidebar-width))/3*2/var(--image-count));
$max-image-width: calc(
calc(1200px - var(--sidebar-width)) / 3 * 2 / var(--image-count)
);
$image-width: calc(
calc(var(--window-width) - var(--sidebar-width)) / 3 * 2 /
var(--image-count)
);
.chat-message-item-image-multi {
width: $image-width;
@ -508,7 +589,7 @@
}
.chat-message-item-image {
max-width: calc(calc(1200px - var(--sidebar-width))/3*2);
max-width: calc(calc(1200px - var(--sidebar-width)) / 3 * 2);
}
}
@ -526,7 +607,7 @@
z-index: 1;
}
.chat-message-user>.chat-message-container>.chat-message-item {
.chat-message-user > .chat-message-container > .chat-message-item {
background-color: var(--second);
&:hover {
@ -637,7 +718,8 @@
min-height: 68px;
}
.chat-input:focus {}
.chat-input:focus {
}
.chat-input-send {
background-color: var(--primary);
@ -656,4 +738,4 @@
.chat-input-send {
bottom: 30px;
}
}
}

View File

@ -69,6 +69,7 @@ import {
isVisionModel,
compressImage,
isFirefox,
isSupportRAGModel,
} from "../utils";
import dynamic from "next/dynamic";
@ -116,6 +117,7 @@ import {
SpeechApi,
WebTranscriptionApi,
} from "../utils/speech";
import { FileInfo } from "../client/platforms/utils";
const ttsPlayer = createTTSPlayer();
@ -460,6 +462,8 @@ function useScrollToBottom(
export function ChatActions(props: {
uploadImage: () => void;
setAttachImages: (images: string[]) => void;
uploadFile: () => void;
setAttachFiles: (files: FileInfo[]) => void;
setUploading: (uploading: boolean) => void;
showPromptModal: () => void;
scrollToBottom: () => void;
@ -502,10 +506,19 @@ export function ChatActions(props: {
);
const [showModelSelector, setShowModelSelector] = useState(false);
const [showUploadImage, setShowUploadImage] = useState(false);
const [showUploadFile, setShowUploadFile] = useState(false);
const accessStore = useAccessStore();
const isEnableRAG = useMemo(
() => accessStore.enableRAG(),
// eslint-disable-next-line react-hooks/exhaustive-deps
[],
);
useEffect(() => {
const show = isVisionModel(currentModel);
setShowUploadImage(show);
setShowUploadFile(isEnableRAG && !show && isSupportRAGModel(currentModel));
if (!show) {
props.setAttachImages([]);
props.setUploading(false);
@ -555,6 +568,14 @@ export function ChatActions(props: {
icon={props.uploading ? <LoadingButtonIcon /> : <ImageIcon />}
/>
)}
{showUploadFile && (
<ChatAction
onClick={props.uploadFile}
text={Locale.Chat.InputActions.UploadFle}
icon={props.uploading ? <LoadingButtonIcon /> : <UploadIcon />}
/>
)}
<ChatAction
onClick={nextTheme}
text={Locale.Chat.InputActions.Theme[theme]}
@ -713,6 +734,14 @@ export function DeleteImageButton(props: { deleteImage: () => void }) {
);
}
export function DeleteFileButton(props: { deleteFile: () => void }) {
return (
<div className={styles["delete-file"]} onClick={props.deleteFile}>
<DeleteIcon />
</div>
);
}
function _Chat() {
type RenderMessage = ChatMessage & { preview?: boolean };
@ -743,6 +772,7 @@ function _Chat() {
const navigate = useNavigate();
const [attachImages, setAttachImages] = useState<string[]>([]);
const [uploading, setUploading] = useState(false);
const [attachFiles, setAttachFiles] = useState<FileInfo[]>([]);
// prompt hints
const promptStore = usePromptStore();
@ -848,9 +878,10 @@ function _Chat() {
}
setIsLoading(true);
chatStore
.onUserInput(userInput, attachImages)
.onUserInput(userInput, attachImages, attachFiles)
.then(() => setIsLoading(false));
setAttachImages([]);
setAttachFiles([]);
localStorage.setItem(LAST_INPUT_KEY, userInput);
setUserInput("");
setPromptHints([]);
@ -1010,7 +1041,9 @@ function _Chat() {
setIsLoading(true);
const textContent = getMessageTextContent(userMessage);
const images = getMessageImages(userMessage);
chatStore.onUserInput(textContent, images).then(() => setIsLoading(false));
chatStore
.onUserInput(textContent, images, userMessage.fileInfos)
.then(() => setIsLoading(false));
inputRef.current?.focus();
};
@ -1077,34 +1110,36 @@ function _Chat() {
// preview messages
const renderMessages = useMemo(() => {
return context
.concat(session.messages as RenderMessage[])
.concat(
isLoading
? [
{
...createMessage({
role: "assistant",
content: "……",
}),
preview: true,
},
]
: [],
)
.concat(
userInput.length > 0 && config.sendPreviewBubble
? [
{
...createMessage({
role: "user",
content: userInput,
}),
preview: true,
},
]
: [],
);
return (
context
.concat(session.messages as RenderMessage[])
// .concat(
// isLoading
// ? [
// {
// ...createMessage({
// role: "assistant",
// content: "……",
// }),
// preview: true,
// },
// ]
// : [],
// )
.concat(
userInput.length > 0 && config.sendPreviewBubble
? [
{
...createMessage({
role: "user",
content: userInput,
}),
preview: true,
},
]
: [],
)
);
}, [
config.sendPreviewBubble,
context,
@ -1324,6 +1359,53 @@ function _Chat() {
setAttachImages(images);
}
async function uploadFile() {
const uploadFiles: FileInfo[] = [];
uploadFiles.push(...attachFiles);
uploadFiles.push(
...(await new Promise<FileInfo[]>((res, rej) => {
const fileInput = document.createElement("input");
fileInput.type = "file";
fileInput.accept = ".pdf,.txt,.md,.json,.csv,.docx,.srt,.mp3";
fileInput.multiple = true;
fileInput.onchange = (event: any) => {
setUploading(true);
const files = event.target.files;
const api = new ClientApi();
const fileDatas: FileInfo[] = [];
for (let i = 0; i < files.length; i++) {
const file = event.target.files[i];
api.file
.upload(file)
.then((fileInfo) => {
console.log(fileInfo);
fileDatas.push(fileInfo);
if (
fileDatas.length === 3 ||
fileDatas.length === files.length
) {
setUploading(false);
res(fileDatas);
}
})
.catch((e) => {
setUploading(false);
rej(e);
});
}
};
fileInput.click();
})),
);
const filesLength = uploadFiles.length;
if (filesLength > 5) {
uploadFiles.splice(5, filesLength - 5);
}
setAttachFiles(uploadFiles);
}
return (
<div className={styles.chat} key={session.id}>
<div className="window-header" data-tauri-drag-region>
@ -1582,6 +1664,29 @@ function _Chat() {
parentRef={scrollRef}
defaultShow={i >= messages.length - 6}
/>
{message.fileInfos && message.fileInfos.length > 0 && (
<nav
className={styles["chat-message-item-files"]}
style={
{
"--file-count": message.fileInfos.length,
} as React.CSSProperties
}
>
{message.fileInfos.map((fileInfo, index) => {
return (
<a
key={index}
href={fileInfo.filePath}
className={styles["chat-message-item-file"]}
target="_blank"
>
{fileInfo.originalFilename}
</a>
);
})}
</nav>
)}
{getMessageImages(message).length == 1 && (
<img
className={styles["chat-message-item-image"]}
@ -1632,6 +1737,8 @@ function _Chat() {
<ChatActions
uploadImage={uploadImage}
setAttachImages={setAttachImages}
uploadFile={uploadFile}
setAttachFiles={setAttachFiles}
setUploading={setUploading}
showPromptModal={() => setShowPromptModal(true)}
scrollToBottom={scrollToBottom}
@ -1651,7 +1758,7 @@ function _Chat() {
/>
<label
className={`${styles["chat-input-panel-inner"]} ${
attachImages.length != 0
attachImages.length != 0 || attachFiles.length != 0
? styles["chat-input-panel-inner-attach"]
: ""
}`}
@ -1697,7 +1804,32 @@ function _Chat() {
})}
</div>
)}
{attachFiles.length != 0 && (
<div className={styles["attach-files"]}>
{attachFiles.map((file, index) => {
return (
<div
key={index}
className={styles["attach-file"]}
title={file.originalFilename}
>
<div className={styles["attach-file-info"]}>
{file.originalFilename}
</div>
<div className={styles["attach-file-mask"]}>
<DeleteFileButton
deleteFile={() => {
setAttachFiles(
attachFiles.filter((_, i) => i !== index),
);
}}
/>
</div>
</div>
);
})}
</div>
)}
{config.sttConfig.enable ? (
<IconButton
icon={<VoiceWhiteIcon />}

View File

@ -111,5 +111,12 @@ export const getServerSideConfig = () => {
!!process.env.NEXT_PUBLIC_ENABLE_NODEJS_PLUGIN &&
!process.env.R2_ACCOUNT_ID &&
!process.env.S3_ENDPOINT,
isEnableRAG: !!process.env.ENABLE_RAG,
ragEmbeddingModel:
process.env.RAG_EMBEDDING_MODEL ?? "text-embedding-3-large",
ragChunkSize: process.env.RAG_CHUNK_SIZE ?? "2000",
ragChunkOverlap: process.env.RAG_CHUNK_OVERLAP ?? "200",
ragReturnCount: process.env.RAG_RETURN_COUNT ?? "4",
};
};

View File

@ -68,6 +68,7 @@ const cn = {
EnablePlugins: "开启插件",
DisablePlugins: "关闭插件",
UploadImage: "上传图片",
UploadFle: "上传文件",
},
Rename: "重命名对话",
Typing: "正在输入…",

View File

@ -70,6 +70,7 @@ const en: LocaleType = {
EnablePlugins: "Enable Plugins",
DisablePlugins: "Disable Plugins",
UploadImage: "Upload Images",
UploadFle: "Upload Files",
},
Rename: "Rename Chat",
Typing: "Typing…",

View File

@ -43,6 +43,7 @@ const DEFAULT_ACCESS_STATE = {
disableGPT4: false,
disableFastLink: false,
customModels: "",
isEnableRAG: false,
};
export const useAccessStore = createPersistStore(
@ -55,6 +56,12 @@ export const useAccessStore = createPersistStore(
return get().needCode;
},
enableRAG() {
this.fetch();
return get().isEnableRAG;
},
isValidOpenAI() {
return ensure(get(), ["openaiApiKey"]);
},

View File

@ -26,6 +26,7 @@ export interface ChatToolMessage {
toolInput?: string;
}
import { createPersistStore } from "../utils/store";
import { FileInfo } from "../client/platforms/utils";
export type ChatMessage = RequestMessage & {
date: string;
@ -304,7 +305,11 @@ export const useChatStore = createPersistStore(
get().summarizeSession();
},
async onUserInput(content: string, attachImages?: string[]) {
async onUserInput(
content: string,
attachImages?: string[],
attachFiles?: FileInfo[],
) {
const session = get().currentSession();
const modelConfig = session.mask.modelConfig;
@ -335,6 +340,7 @@ export const useChatStore = createPersistStore(
let userMessage: ChatMessage = createMessage({
role: "user",
content: mContent,
fileInfos: attachFiles,
});
const botMessage: ChatMessage = createMessage({
role: "assistant",
@ -359,7 +365,6 @@ export const useChatStore = createPersistStore(
m.lang === (getLang() == "cn" ? getLang() : "en")) &&
m.enable,
);
// save user's and bot's message
get().updateCurrentSession((session) => {
const savedUserMessage = {
@ -369,80 +374,98 @@ export const useChatStore = createPersistStore(
session.messages.push(savedUserMessage);
session.messages.push(botMessage);
});
const isEnableRAG = attachFiles && attachFiles?.length > 0;
var api: ClientApi;
api = new ClientApi(ModelProvider.GPT);
if (
config.pluginConfig.enable &&
session.mask.usePlugins &&
allPlugins.length > 0 &&
(allPlugins.length > 0 || isEnableRAG) &&
modelConfig.model.startsWith("gpt") &&
modelConfig.model != "gpt-4-vision-preview"
) {
console.log("[ToolAgent] start");
const pluginToolNames = allPlugins.map((m) => m.toolName);
api.llm.toolAgentChat({
messages: sendMessages,
config: { ...modelConfig, stream: true },
agentConfig: { ...pluginConfig, useTools: pluginToolNames },
onUpdate(message) {
botMessage.streaming = true;
if (message) {
botMessage.content = message;
}
get().updateCurrentSession((session) => {
session.messages = session.messages.concat();
});
},
onToolUpdate(toolName, toolInput) {
botMessage.streaming = true;
if (toolName && toolInput) {
botMessage.toolMessages!.push({
toolName,
toolInput,
if (isEnableRAG) pluginToolNames.push("rag-search");
const agentCall = () => {
api.llm.toolAgentChat({
chatSessionId: session.id,
messages: sendMessages,
config: { ...modelConfig, stream: true },
agentConfig: { ...pluginConfig, useTools: pluginToolNames },
onUpdate(message) {
botMessage.streaming = true;
if (message) {
botMessage.content = message;
}
get().updateCurrentSession((session) => {
session.messages = session.messages.concat();
});
}
get().updateCurrentSession((session) => {
session.messages = session.messages.concat();
});
},
onFinish(message) {
botMessage.streaming = false;
if (message) {
botMessage.content = message;
get().onNewMessage(botMessage);
}
ChatControllerPool.remove(session.id, botMessage.id);
},
onError(error) {
const isAborted = error.message.includes("aborted");
botMessage.content +=
"\n\n" +
prettyObject({
error: true,
message: error.message,
},
onToolUpdate(toolName, toolInput) {
botMessage.streaming = true;
if (toolName && toolInput) {
botMessage.toolMessages!.push({
toolName,
toolInput,
});
}
get().updateCurrentSession((session) => {
session.messages = session.messages.concat();
});
botMessage.streaming = false;
userMessage.isError = !isAborted;
botMessage.isError = !isAborted;
get().updateCurrentSession((session) => {
session.messages = session.messages.concat();
});
ChatControllerPool.remove(
session.id,
botMessage.id ?? messageIndex,
);
},
onFinish(message) {
botMessage.streaming = false;
if (message) {
botMessage.content = message;
get().onNewMessage(botMessage);
}
ChatControllerPool.remove(session.id, botMessage.id);
},
onError(error) {
const isAborted = error.message.includes("aborted");
botMessage.content +=
"\n\n" +
prettyObject({
error: true,
message: error.message,
});
botMessage.streaming = false;
userMessage.isError = !isAborted;
botMessage.isError = !isAborted;
get().updateCurrentSession((session) => {
session.messages = session.messages.concat();
});
ChatControllerPool.remove(
session.id,
botMessage.id ?? messageIndex,
);
console.error("[Chat] failed ", error);
},
onController(controller) {
// collect controller for stop/retry
ChatControllerPool.addController(
session.id,
botMessage.id ?? messageIndex,
controller,
);
},
});
console.error("[Chat] failed ", error);
},
onController(controller) {
// collect controller for stop/retry
ChatControllerPool.addController(
session.id,
botMessage.id ?? messageIndex,
controller,
);
},
});
};
if (attachFiles && attachFiles.length > 0) {
await api.llm
.createRAGStore({
chatSessionId: session.id,
fileInfos: attachFiles,
})
.then(() => {
console.log("[RAG]", "Vector db created");
agentCall();
});
} else {
agentCall();
}
} else {
if (modelConfig.model.startsWith("gemini")) {
api = new ClientApi(ModelProvider.GeminiPro);

View File

@ -3,6 +3,7 @@ import { showToast } from "./components/ui-lib";
import Locale from "./locales";
import { RequestMessage } from "./client/api";
import { DEFAULT_MODELS } from "./constant";
import { useAccessStore } from "./store";
export function trimTopic(topic: string) {
// Fix an issue where double quotes still show in the Indonesian language
@ -296,3 +297,9 @@ export function isVisionModel(model: string) {
return visionKeywords.some((keyword) => model.includes(keyword));
}
export function isSupportRAGModel(modelName: string) {
return DEFAULT_MODELS.filter((model) => model.provider.id === "openai").some(
(model) => model.name === modelName,
);
}

BIN
docs/images/rag-example.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

BIN
docs/images/rag.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 251 KiB

74
docs/rag-cn.md Normal file
View File

@ -0,0 +1,74 @@
# RAG 功能配置说明
> [!WARNING]
> 该功能目前在预览阶段,可能会有较多的问题,请在仔细阅读本文档后再使用。
## 效果图
![example](./images/rag-example.jpg)
## 原理
![example](./images/rag.png)
## 已知问题
- 由于接口中使用 nodejs 运行时,在 vercel 环境下接口可能会超时,建议使用 docker 部署
- 已开启的插件可能会影响到数据检索,可以关闭部分插件后再使用
- 已创建的向量数据不会删除
- 同一聊天窗口内即使“清除聊天”也可以访问已经上传的文件内容
- RAG 插件需要一定的话术来让模型触发查询
- 上传文件部分的 UI 交互可能会变更
- 暂不支持文档总结
## 支持的文件类型
- txt
- md
- pdf
- docx
- csv
- json
- srt
- mp3 (基于OpenAIWhisper)
## 配置
1. 登录 https://cloud.qdrant.io 并创建一个账户
2. 在控制面板中创建一个 Cluster
3. 获取 Cluster 的 Cluster URL 和 API Key
4. 完善下面的环境变量配置后即可使用
## 环境变量
### `ENABLE_RAG`
如果你想启用 RAG 功能,将此环境变量设置为 1 即可。
### `QDRANT_URL`
qdrant 服务的 Cluster URL。
### `QDRANT_API_KEY`
qdrant 服务的 ApiKey。
### `RAG_CHUNK_SIZE` (可选)
分割后文档的最大大小按字符数计算默认2000。
### `RAG_CHUNK_OVERLAP` (可选)
分割文档时块重叠数量默认200。
### `RAG_RETURN_COUNT` (可选)
检索时返回的文档数量默认4。
### `RAG_EMBEDDING_MODEL` (可选)
向量化时使用的向量模型默认text-embedding-3-large。
可选项:
- text-embedding-3-small
- text-embedding-3-large
- text-embedding-ada-002

View File

@ -21,28 +21,37 @@
"@aws-sdk/s3-request-presigner": "^3.414.0",
"@fortaine/fetch-event-source": "^3.0.6",
"@hello-pangea/dnd": "^16.5.0",
"@langchain/cohere": "^0.0.6",
"@langchain/community": "0.0.30",
"@langchain/openai": "0.0.14",
"@langchain/pinecone": "^0.0.4",
"@next/third-parties": "^14.1.0",
"@pinecone-database/pinecone": "^2.2.0",
"@qdrant/js-client-rest": "^1.8.2",
"@svgr/webpack": "^6.5.1",
"@vercel/analytics": "^0.1.11",
"@vercel/speed-insights": "^1.0.2",
"axios": "^0.26.0",
"cheerio": "^1.0.0-rc.12",
"d3-dsv": "2",
"duck-duck-scrape": "^2.2.4",
"emoji-picker-react": "^4.9.2",
"encoding": "^0.1.13",
"epub2": "^3.0.2",
"fuse.js": "^7.0.0",
"html-entities": "^2.4.0",
"html-to-image": "^1.11.11",
"html-to-text": "^9.0.5",
"https-proxy-agent": "^7.0.2",
"langchain": "0.1.20",
"md5": "^2.3.0",
"langchain": "0.1.30",
"mammoth": "^1.7.1",
"mermaid": "^10.6.1",
"mime": "^4.0.1",
"nanoid": "^5.0.3",
"next": "^13.4.9",
"node-fetch": "^3.3.1",
"officeparser": "^4.0.8",
"openai": "^4.28.4",
"pdf-parse": "^1.1.1",
"react": "^18.2.0",
@ -57,6 +66,7 @@
"sass": "^1.59.2",
"sharp": "^0.33.3",
"spark-md5": "^3.0.2",
"srt-parser-2": "^1.2.3",
"use-debounce": "^9.0.4",
"zustand": "^4.3.8"
},
@ -82,7 +92,7 @@
},
"resolutions": {
"lint-staged/yaml": "^2.2.2",
"@langchain/core": "0.1.30",
"@langchain/core": "0.1.53",
"openai": "4.28.4"
},
"packageManager": "yarn@1.22.19"

782
yarn.lock

File diff suppressed because it is too large Load Diff